BABAR Update and Plans

David B. MacFarlane SLAC Annual Program Review June 14, 2005

USA [38/311]

California Institute of Technology UC. Irvine UC, Los Angeles UC, Riverside UC, San Diego UC. Santa Barbara UC, Santa Cruz U of Cincinnati U of Colorado Stanford U Colorado State U of Tennessee Harvard U U of Texas at Austin U of Iowa U of Texas at Dallas Iowa State U Vanderbilt L.BNI. U of Wisconsin LLNL. Yale U of Louisville U of Maryland Canada U of Massachusetts, Amherst U of British Columbia MIT U of Mississippi McGill U Mount Holyoke College U de Montréal U of Victoria SUNY, Albany U of Notre Dame China Ohio State U U of Oregon Inst. of High Energy Physics, Beijing U of Pennsylvania Prairie View A&M U France Princeton U LAPP, Annecy SLAC LAL Orsay U of South Carolina

The **BABAR** Collaboration 11 Countries 80 Institutions 623 Physicists

[4/24]

[1/5]

[5/53]

LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

Germany [5/24]

Ruhr U Bochum U Dortmund Technische U Dresden **U** Heidelberg U Rostock

[12/99] Italy

INFN, Bari **INFN** Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova & Univ INFN, Milano & Univ INFN, Napoli & Univ INFN, Padova & Univ INFN, Pisa & Univ & Scuola Normale Superiore

INFN, Perugia & Univ INFN, Roma & Univ "La Sapienza" INFN. Torino & Univ INFN, Trieste & Univ

The Netherlands [1/4]

NIKHEF, Amsterdam

Norway

[1/3]

U of Bergen

. D.

[1/13] Russia

Budker Institute, Novosibirsk

Spain

[2/3]

IFAE-Barcelona IFIC-Valencia

United Kingdom

[11/75] U of Birmingham U of Bristol Brunel U U of Edinburgh U of Liverpool **Imperial** College Queen Mary, U of London U of London, Royal Holloway U of Manchester Rutherford Appleton Laboratory U of Warwick

BABAR Update and Plans

BABAR Detector

DCH electronics upgrade

> Motivation:

 Reduce deadtime due to serialization and shipping of data from DIOM to ROM

> Upgrade in two steps:

- Phase 1 (summer 2004)
 - Ship only 1/2 waveform information (32→16 bytes) from frontends
 - No change observed with data
- Phase 2 (Oct 2005)
 - Larger FPGA for feature extraction before transmission \rightarrow hardware change
 - New boards in production

IFR upgrade with LSTs

Bottom & top sextants installed summer 2004 Remaining sextants delayed until summer 2006

LST installation summer 2004

Bottom sextant: Aug 15-Sep 4 Top sextant: Sep 16-29

Weak Interaction in Standard Model

CP violation in B decays

В CPV through interference of decay amplitudes **Α**e^{iφ}wke^{iδ}st</sub> $+\varphi_{wk} := -\varphi_{wk} \overline{B} \to \overline{f}$ $B \rightarrow f$ $\Gamma(\boldsymbol{B} \rightarrow \boldsymbol{f}) = \left| \boldsymbol{A}_{1} + \boldsymbol{A}_{2} \boldsymbol{e}^{i \varphi_{wk}} \boldsymbol{e}^{i \delta_{st}} \right|^{2}$ $\Gamma(\overline{B} \to \overline{f}) = \left| A_1 + A_2 e^{-i\varphi_{wk}} e^{i\delta_{st}} \right|^2$ $\Gamma(B \to f) \neq \Gamma(\overline{B} \to f)$ for $\varphi_{wk} \neq 0$ and $\delta_{st} \neq 0$

CPV in charmonium modes

Measuring time-dependent CP asymmetries

BABAR & Belle physics results

ļ	Journal Papers	BABAR	Belle		
4	<i><2003</i>	32	54		
	2003	39	28		
	2004	52	35		
	June 2005	26	23		
4	Total	149	140		
Ī	Conference Contributions	BABAR	Belle		
	Papers submitted to ICHEP04	72	63		
1	Abstracts submitted to LPO5	75	73		

BABAR publication history

Even our backgrounds yield physics!

Searches for the $\theta(1540)$ pentaquark

Progress on b quark couplings

Search for $B \rightarrow \rho \gamma, \omega \gamma$

Inclusive $|V_{ub}|$ measurements

BABAR Update and Plans

CPV in charmless modes

Very promising: $B \rightarrow \rho \rho$ decays

Summary of constraints on α

Unexpectedly good progress on gamma!

Effect depends on ratio of two diagrams

Dalitz plot analysis for gamma

Idea: Increase B decay interference through D decay Dalitz plot

June 14, 2005

UT from sin2 β & indirect constraints

June 14, 2005

UT from CP violation measurements alone

June 14, 2005

BABAR Update and Plans

95% contours

CPV in Penguin Modes

Potential New Physics contributions

CPV in charmonium & s-penguin modes

June 14, 2005

New three-body mode: $B \rightarrow K_S K_S K_S$

How good are Standard Model predictions?

PEP-II/BABAR run plan for 2005-2008

> Run 5: Apr 2005 to July 31, 2006

- Down for month of October for PPS certification, Linac & PEP-II safety issues, DCH readout phase 2, LST preparations
- Run through holidays in Dec 2005

> LST installation down: Aug 1 to Nov 30, 2006

- Installation of remaining 4 barrel sextants of the IFR
- Installation of PEP-II vacuum upgrades and rf-station
- LCLS construction and installation
- > Run 6: Dec 1, 2006 to Aug 31, 2007
 - Down for Sep-Nov 2007 for LCLS construction & installation
 - Run through holidays in Dec 2006
- > Run 7: Dec 1, 2007 to Sep 30, 2008
 - Run through holidays in Dec 2007

Projections of data sample growth

Snapshot I: Summer 2006

Sum of all modes reaches ~5 sigma level

Snapshot II: Summer 2008

Projections are statistical errors only; but systematic errors at few percent level

Global CKM fit: 2008

95% contours

Snapshot III: Fall 2010?

UT constraints with ~no NP assumptions

UT constraints in 2008

68% contours

Summary: Physics reach of BABAR

Goal for 2005-2006: double current data set

- Delay in Run 5 can be overcome by summer 2006 with extended running period, with substantial reduction in errors on CP violation asymmetries in rare decay modes
- Error on average of Penguin modes should reach 0.06

> Goal for 2007-2008: double again to ~ 1 ab⁻¹

- Individual Penguin modes with errors in range 0.06-0.12
- Suite of fundamental Standard Model measurements with substantially improved levels of precision

 Sensitivity to New Physics through rare decays, CP violation, & large data sample with a significant discovery potential

 Full program of flavor physics/CP violation measurements provide fundamental constraints on future New Physics discoveries

Beyond 2008 might offer exciting opportunities if New Physics has been seen by B Factories & LHC

BABAR line organization

Category	Training Requirement	Recommended Supervisor	Documentation Requirements		
a. Short- term visitor	None. Category (b) or higher recommended for BABAR users.	None	None		
b. Office worker	EOESH, GERT, ES&H 239	Member of BABAR Management team or SLAC Group Leader	Office JHAM, Office Building AHA		
c. Shift- taker	(b) above plus Shift Training	Run Coordinator	(b) above plus Shifter JHAM, IR- 2 AHA		
d. System worker	(b) above plus BABAR Orientation, job specific training	System Manager	(b),(c) above plus System JHAM(s)		
e. R&D worker	(b) above plus job specific training	R&D Manager	(b) above plus job specific JHAM, job site AHA		

<u>http://www.slac.stanford.edu/BFROOT/www/Organization/</u> Spokesperson/safety/safety_checklist.htm

BABAR work categories

Short-term visitor	Attends no more than one collaboration meeting per year or equivalent
Office worker	Only works in the ROB or one of the other office areas but not IR-2 or other laboratory space
Shift-taker	Stands shifts on BABAR in IR-2
System worker	Does maintenance work on a detector system in IR-2 or in a system laboratory space
R&D worker	Does development or testing work in a lab setting or temporary system space

Operational & physics manpower

Community	CY2004	CY2005	CY2006	CY2007	CY2008	Physics
US University	63.0	60.0	56.0	52.0	52.0	
students/posdocs	15.2	14.5	13.5	12.5	12.5	68.0
faculty/staff	32.5	31.0	28.9	26.8	26.8	33.8
	47.7	45.4	42.4	39.4	39.4	101.8
SLAC	33.0	32.0	30.0	26.0	26.0	
students/postdocs	16.0	15.5	14.5	12.6	12.6	20.0
faculty/staff	17.0	16.5	15.5	13.4	13.4	20.5
	33.0	32.0	30.0	26.0	26.0	40.5
non-US	65.0	63.0	62.0	60.0	60.0	
students/postdocs	31.5	30.5	30.0	29.0	29.0	123.0
faculty/staff	33.5	32.5	32.0	31.0	31.0	63.5
	65.0	63.0	62.0	60.0	60.0	186.5
Total	161.0	155.0	148.0	138.0	138.0	
students/postdocs	62.6	60.4	58.0	54.2	54.2	211.0
faculty/staff	83.1	80.0	76.4	71.2	71.2	117.8
	145.7	140.4	134.4	125.4	125.4	328.8

Detector operations, online & offline data processing, MC production

BABAR Detector

Summer 2004 results for $B \rightarrow \pi\pi$

Winter 2005 results for $B \rightarrow \pi\pi$

June 14, 2005

Competition: Better physics performance

				BABAR			Errors/Luminosity					
S	Belle						Belle	BABAR				
				Untag				Untag			Perf	Lumi
Mode	S	stat err	lumi	sample	S	stat err	lumi	sample	st*sqrt(L)	st*sqrt(L)	Ratio	Ratio
phiK0	0.060	0.330	253	175	0.500	0.250	205	212	5.249	3.579	1.466	2.150
etapK0	0.650	0.180	253	512	0.270	0.140	205	819	2.863	2.004	1.428	2.040
KKK0	0.490	0.180	253	399	0.550	0.170	205	452	2.863	2.434	1.176	1.384
f0K0	-0.470	0.410	253	102	0.950	0.320	192	152	6.521	4.434	1.471	2.163
pi0K0	0.300	0.590	253	173	0.350	0.300	205	300	9.385	4.295	2.185	4.773
ccbarK0	0.728	0.056	140	5417	0.722	0.040	205	10320	0.663	0.573	1.157	1.339
pipi	-1.000	0.210	140	373	-0.300	0.170	205	467	2.485	2.434	1.021	1.042
rhopi S	-0.280	0.230	140	483	-0.100	0.140	192	1184	2.721	1.940	1.403	1.968
rhopi A+-	-0.020	0.160	140	483	-0.210	0.110	192	1184	1.893	1.524	1.242	1.543
rhopi A-+	-0.530	0.290	140	483	-0.470	0.140	192	1184	3.431	1.940	1.769	3.129
Averages											1.432	2.153
Typically better errors for BABAR Normalized												

despite larger Belle dataset

Normalized performance ratio

Bottom line: BABAR is getting the equivalent of a factor of 2 in luminosity through better analysis/detector performance

 m_{ES} and ΔE fit for $B \rightarrow \rho \ell v$

