Scientific Computing at SLAC

Richard P. Mount

Director: Scientific Computing and Computing
Services

DOE Review
June 15, 2005



Scientific Computing
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Application Sciences | yigh_energy and Particle-Astro Physics, Accelerator
Science, Photon Science ...

Issues addressable
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Computing
techniques

Computing
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Single system image, Low-latency clusters, Throughput-
oriented clusters, Scalable storage ...

Computing
hardware
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Scientific Computing:
Current SLAC leadership and recent
achievements in Scientific Computing

PDE solving for GEANTA :
complex photon/particle
electromagnetic interaction in
structures complex

structures (in
collaboration
with CERN)

Huge-memory
systems for data
analysis

World’s largest

Scalable data database

management ‘ % 5

% Internet2 Land-Speed

Record; SC2004
Bandwidth Challenge
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LAC Scientific Computing Drivers

BaBar (data-taking ends December 2008)
— The world’s most data-driven experiment
— Data analysis challenges until the end of the decade

« KIPAC
— From cosmological modeling to petabyte data analysis

* Photon Science at SSRL and LCLS
— Ultrafast Science, modeling and data analysis

» Accelerator Science
— Modeling electromagnetic structures (PDE solvers in a demanding application)

 The Broader US HEP Program (aka LHC)
— Contributes to the orientation of SLAC Scientific Computing R&D



SLAC-BaBar Computing Fabric

Client Client Client Client Client Client 1700 dual CPU Linux

400 single CPU
@Sun/Solaris

HEP-specific ROOT software (Xrootd) +
Objectivity/DB object database

%

Disk Disk Disk Disk Disk Disk 120 dual/quad CPU
Server Server Server Server Server Server Sun/Solaris
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FibreChannel RAID
@rrays

HPSS + SLAC enhancements to
ROOT and Objectivity server code
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Tape Tape Tape Tape Tape 25 dual CPU
Server Server Server Server Server Sun/Solaris

40 STK 9940B
QQQAQQQQAQ QQ sy
6 STK Powderhorn

over 1 PB of data

IP Network
(Cisco)

IP Network
(Cisco)




BaBar Computing at SLAC

Farm Processors (5 generations, 3700 CPUs)
Servers (the majority of the complexity)

Disk storage (2+ generations, 400+ TB)

Tape storage (40 Drives)

Network “backplane” (~26 large switches)
External network
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Disks and Servers
1. 6 TB usable per tray ~160 trays bought 2003/4
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Tape Drives
40 STK 9940B (200 GB) Drives
6 STK 9840 (20 GB) Drives
6 STK Silos (capacity 30,000 tapes)




BaBar Farm-Server Network
~26 Cisco 65xx Switches
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622 Mbits/ to ESNet
1000 Mbits/s to Internet 2

~300 Mbits/s average traffic
Two 10 Gbits/s wavelengths to ESNET, UltraScience Net/NLR coming in July
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Research Areas (1)

=~ (Funded by DOE-HEP and DOE SciDAC and DOE-MICS)

Huge-memory systems for data analysis
(SCCS Systems group and BaBarr)

Expected major growth area (more later)

Scalable Data-Intensive Systems:
(SCCS Systems and Physics Experiment Support groups)

“The world’s largest database” (OK not really a database any more)
How to maintain performance with data volumes growing like “Moore’s Law"?

How to improve performance by factors of 10, 100, 1000, ... ?
(intelligence plus brute force)

Robustness, load balancing, troubleshootability in 1000 — 10000-box systems
Astronomical data analysis on a petabyte scale (in collaboration with KIPAC)



Research Areas (2)

=~ (Funded by DOE-HEP and DOE SciDAC and DOE MICS)

e Grids and Security:
(SCCS Physics Experiment Support. Systems and Security groups)

— PPDG: Building the US HEP Grid — OSG;
— Security in an open scientific environment;
— Accounting, monitoring, troubleshooting and robustness.

 Network Research and Stunts:
(SCCS Network group — Les Cottrell et al.)

— Land-speed record and other trophies

* Internet Monitoring and Prediction:
(SCCS Network group)

— |EPM: Internet End-to-End Performance Monitoring (~5 years)
SLAC is the/a top user of ESNet and the/a top user of Internet2. (Fermilab
doesn’t do so badly either)

— INCITE: Edge-based Traffic Processing and Service Inference for High-
Performance Networks



Research Areas (3)

(Funded by DOE-HEP and DOE SciDAC and DOE MICS)

« GEANT4: Simulation of particle interactions in million to billion-element
geometries:
(SCCS Physics Experiment Support Group — M. Asai, D. Wright, T. Ko,
J. Perl ...)

— BaBar, GLAST, LCD ...
— LHC program
— Space

— Medical

« PDE Solving
for complex electromagnetic structures:
(Kwok ‘s advanced Computing Department + SCCS clusters)



Growing Competences

o Parallel Computing (MPI ...)
— Driven by KIPAC (Tom Abel) and ACD (Kwok Ko)

— SCCS competence in parallel computing (= Alf Wachsmann
currently)

— MPI clusters and SGI SSI system

e Visualization
— Driven by KIPAC and ACD

— SCCS competence is currently experimental-HEP focused
(WIRED, HEPREP ...)

— (A polite way of saying that growth is needed)






Technology Issues in Data

AcCCesSS
e Latency
e Speed/Bandwidth
e (Cost)

e (Reliabilty)



atency and Speed — Random Access

Random-Access Storage Performance
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The Strategy

There Is significant commercial interest in an architecture
iIncluding data-cache memory

But: from interest to delivery will take 3-4 years

And: applications will take time to adapt not just codes, but
their whole approach to computing, to exploit the new
architecture

Hence: two phases
1. Development phase (years 1,2,3)

Commodity hardware taken to its limits

BaBar as principal user, adapting existing data-access software to exploit the
configuration

BaBar/SLAC contribution to hardware and manpower
Publicize results

Encourage other users

Begin collaboration with industry

2. Production-Class Facility (year 3 onwards)

Optimized architecture
Strong industrial collaboration
Wide applicability



PetaCache
The Team

e David Leith, Richard Mount, Pls
 Randy Melen, Project Leader

* Bill Weeks, performance testing
 Andy Hanushevsky, xrootd

e Systems group members

* Network group members
 BaBar (Stephen Gowdy)



Development Machine
Design Principles

Attractive to scientists
— Big enough data-cache capacity to promise revolutionary benefits
— 1000 or more processors

Processor to (any) data-cache memory latency < 100 us

Aggregate bandwidth to data-cache memory > 10 times that to a
similar sized disk cache

Data-cache memory should be 3% to 10% of the working set
(approximately 10 to 30 terabytes for BaBar)

Cost effective, but acceptably reliable
— Constructed from carefully selected commodity components

Cost no greater than (cost of commodity DRAM) + 50%



Development Machine
Design Choices

Intel/AMD server mainboards with 4 or more ECC
dimm slots per processor

2 Gbyte dimms (4 Gbyte too expensive this year)
64-bit operating system and processor
— Favors Solaris and AMD Opteron

Large (500+ port) switch fabric
— Large IP switches are most cost-effective

Use of ($10M+) BaBar disk/tape infrastructure,
augmented for any non-BaBar use




(-  Development Machine
“Deployment — Proposed Year 1

Memory Interconnect Switch Fabric Cisco/Extreme/Foundry
650 Nodes , each
2 CPU, 16 GB memory
Storage Interconnect Switch Fabric Cisco/Extreme/Foundry

> 100 Disk Servers

8008000



7»»  Development Machine
eployment — Currently Funded

Cisco Switch

Clients
up to 2000 Nodes, each
2 CPU, 2 GB memory
Linux

Data-Servers 64-128 Nodes, each
Sun V20z, 2 Opteron CPU, 16 GB memory
Up to 2TB total Memory
Solaris
ﬂ Cisco Switches
PetaCache / / \ \
MICS Funding

o 8008000

Existing HEP-Funded
BaBar Systems




Latency (1)
|deal

Richard P. Mount, SLAC June 2005 27



Latency (2)
Current reality

Client Application

Data Server Data-Server-Client
/7 N ]
OS OS OS
File System TCP Stack TCP Stack

P NIC NIC
| |
Network

Switches




Latency (3)
Immediately Practical Goal

Memory Client Application
Data Server Data-Server-Client
/ N ]
OS OS
TCP Stack TCP Stack
NIC NIC

‘ Network \

Switches
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Development Machine Deployment
Likely “Low-RiIsk” Next Step

LLLLL
Data-Servers 80 Nodes, each
8 Opteron CPU , 128 GB memory
Up to 10TB total Memory
Solaris

Cisco Switch

/L N\
8008000




Development Machine
=Complementary “Higher Risk” Approach

e Add Flash-Memory based subsystems
— Quarter to half the price of DRAM
— Minimal power and heat
— Persistent

— 25 us chip-level latency (but hundreds of us latency in
consumer devices)

— Block-level access (~1kbyte)

— Rated life of 10,000 writes for two-bit-per-cell devices
(NB BaBar writes FibreChannel disks < 100 times in their
entire service life)

o EXploring necessary hardware/firmware/software
development with PantaSys Inc.



Object-Serving Software

« AMS and Xrootd (Andy Hanushevsky/SLAC)

— Optimized for read-only access
— Make 1000s of servers transparent to user code
— Load balancing
— Automatic staging from tape
— Failure recovery
« Can allow BaBar to start getting benefit from a new

data-access architecture within months without
changes to user code

e Minimizes impact of hundreds of separate address
spaces in the data-cache memory
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