
Combining Data on Dark Matter

(How Can We Solve the Dark Matter Problem?)

The Dark Matter Problem

- The energy density of the universe is mostly unidentified
 - **→** Baryons: 5%
 - Dark Matter: 20%
 - Dark Energy: 75%
- The dark matter is likely to be "WIMPs": weakly interacting massive particles in the 100 GeV – TeV range
 - 1 pb annihilation cross section gives correct relic density
- The evidence for this standard cosmological model is overwhelming
 - CMB, big-bang nucleosynthesis, large scale structure, clusters...

To Solve the Dark Matter Problem We Must:

- 1.) detect dark matter particles as particles in the galaxy
- 2.) detect dark matter particles in controlled environments at particle accelerators
- 3.) show that these two are the same particle
- To accomplish this we need to combine data from astrophysics and accelerators

Alternative Scenarios

- The WIMP observed at LHC is all / part / none of the dark matter
- The WIMP observed at LHC is stable / unstable to a superWIMP
- The underlying physics is SUSY / extra dimensions / TBD
- Cosmology was standard / exotic to temperatures of 100 GeV
- The dark matter halo of the galaxy is smooth / clumpy
- The velocity distribution of dark matter is smooth / peaky

• We need the data that will distinguish all of these possiblities.

Detecting Dark Matter I


- Direct detection
 - underground (lower CR bkg.)
- Nuclear recoils
 - ~50 keV deposited
 - many detection techniques
 - germanium, silicon (CDMS, EDELWEISS)
 - liquid xenon (ZEPLIN, XENON)
 - sodium iodide (DAMA)
 - calcium tungstate (CRESST)
 - bubble chambers (COUPP)
 - others...

CDMS fridge + icebox @ Soudan mine

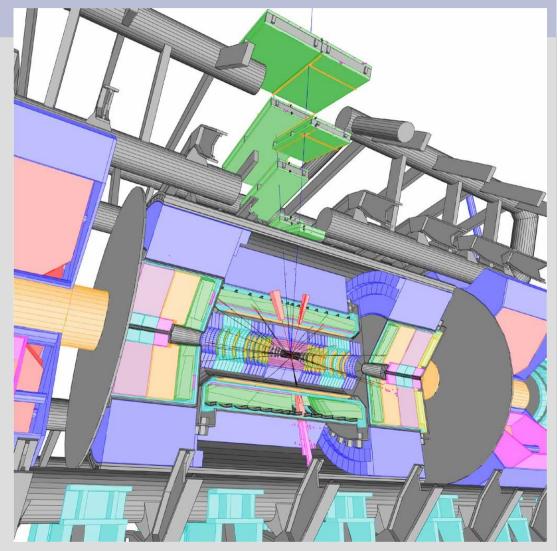
Detecting Dark Matter II

- Indirect detection
 - annihilations in galactic halo
 - energetic particles
 - photons (gamma rays)
 - antiprotons, antideuterons
 - positrons
- Gamma rays
 - satellites (EGRET, GLAST)
 - ACTs (HESS, VERITAS, MAGIC)
 - follow-up of GLAST sources?
- Antiprotons, positrons
 - PAMELA, AMS, BESS
- Neutrinos
 - AMANDA, IceCube, ANTARES

electron-positron pair

Dark Matter in the Gamma Ray Sky

Milky Way Halo simulated by Taylor & Babul (2005)
All-sky map of gamma ray emission from dark matter annihilations


dark matter substructure exhibits:

- 1. characteristic γ -ray spectrum
- 2. spatially extended emission

Detecting Dark Matter III

- LHC
 - find WIMPs up to 2 TeV in missing energy events
- Linear collider
 - mass reach not as high
 - precision measurements
- Make a connection to astrophysical searches

Simulation of event in ATLAS @ LHC

Dark Matter Microphysics: Examples from Supersymmetry

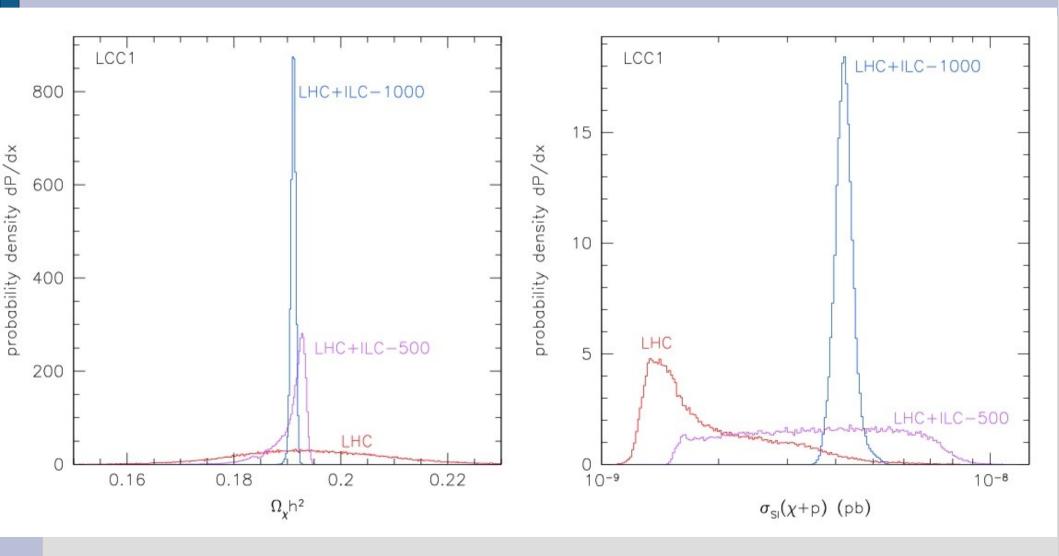
- Work done with M. Battaglia, M. Peskin and T. Wizansky
 - hep-ph/0602187 (120 pages)
- Assume SUSY study 4 "benchmark" points
 - LCC1-4, chosen by ALCPG: dark matter and ILC-500
- Identify expected collider measurements
 - masses, polarized production cross-sections, FB asymmetries
- Generate 1e6 SUSY models consistent with measurements
 - 24 parameters most general MSSM conserving flavor and CP
- Study the range of properties relevant to dark matter
- Three cases:
 - Large Hadron Collider
 - ◆ International Linear Collider 500 GeV CM energy
 - → ILC TeV CM energy

Collider measurements: LCC1

cross sections

cross section		LCC1 Value (fb)		ILC 500	ILC 1000 _
$\sigma(e^+e^- \to \widetilde{\chi}_1^+ \widetilde{\chi}_1^-)$	LR	431.5 (0.758)	±	1.1%*	
	RL	$13.1 \ (0.711)$	\pm	$3.5\%^{*}$	
$\sigma(e^+e^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0)$	LR	172.2	\pm	$2.1\%^*$	
	RL	20.6	\pm	$7.5\%^{*}$	
$\sigma(e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0)$	LR	189.9	\pm	$2.0\%^{*}$	
,	RL	5.3	\pm	$10.2\%^*$	
$\sigma(e^+e^- \to \widetilde{\tau}_1^+\widetilde{\tau}_1^-)$	LR	45.6	\pm	7%	
	RL	142.1	\pm	4%	
$\sigma(e^+e^- \to \tilde{e}_R^+\tilde{e}_R^-)$	LR	$57.3\ (0.696)$	\pm	6%	
,	RL	$879.9\ (0.960)$	\pm	1.5%	
$\sigma(e^+e^- \to \tilde{t}_1\tilde{\bar{t}}_1)$	LR	9.8	\pm		15%
	RL	11.1	\pm		14%

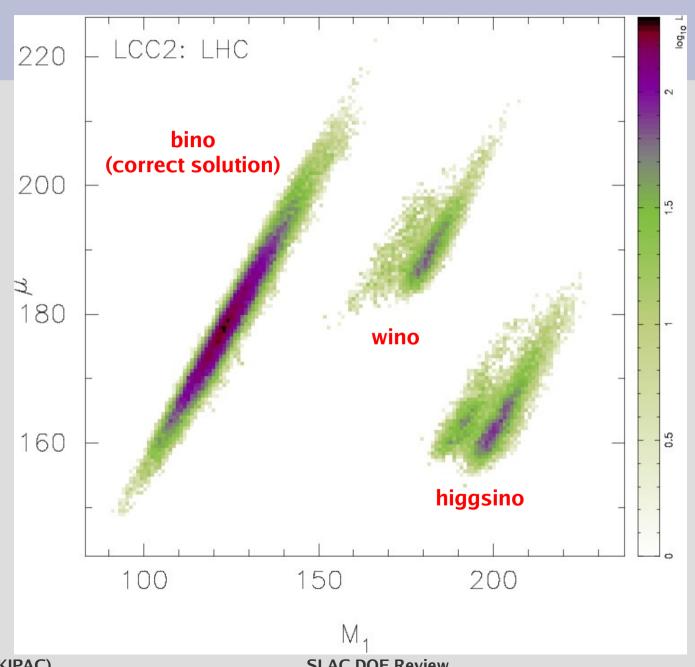
mass/mass splitting	LCC1 Value		LHC	ILC 500	ILC 1000
$m(\widetilde{\chi}_1^0)$	95.5	土	4.8	0.05	
$m(\widetilde{\chi}_2^0) - m(\widetilde{\chi}_1^0)$	86.1	\pm	1.2	0.07	
$m(\widetilde{\chi}_3^0) - m(\widetilde{\chi}_1^0)$	261.2	\pm	$@^a$	4.0	
$m(\widetilde{\chi}_4^0) - m(\widetilde{\chi}_1^0)$	280.1	\pm	2.2^{a}	2.2	
$m(\widetilde{\chi}_1^+)$	181.7	\pm	-	0.55	
$m(\widetilde{\chi}_2^+)$	374.7	\pm	-	-	3.0
$m(\widetilde{e}_R)$	143.1	±	-	0.05	
$m(\widetilde{e}_R) - m(\widetilde{\chi}_1^0)$	47.6	\pm	1.0	0.2	
$m(\widetilde{\mu}_R) - m(\widetilde{\chi}_1^0)$	47.5	\pm	1.0	0.2	
$m(\widetilde{\tau}_1) - m(\widetilde{\chi}_1^0)$	38.6	\pm	5.0	0.3	
$BR(\widetilde{\chi}_2^0 \to \widetilde{e}e)/BR(\widetilde{\chi}_2^0 \to \widetilde{\tau}\tau)$	0.077	\pm	0.008		
$m(\widetilde{e}_L) - m(\widetilde{\chi}_1^0)$	109.1	\pm	1.2	0.2	
$m(\widetilde{\mu}_L) - m(\widetilde{\chi}_1^0)$	109.1	\pm	1.2	1.0	
$m(\widetilde{ au}_2) - m(\widetilde{\chi}_1^0)$	112.3	\pm	-	1.1	
$m(\widetilde{ u}_e)$	186.2	\pm	-	1.2	
m(h)	113.68	土	0.25	0.05	
m(A)	394.4	\pm	*	(> 240)	1.5
$m(\widetilde{u}_R), m(\widetilde{d}_R)$	548.	±	19.0	16.0	
$m(\widetilde{s}_R),m(\widetilde{c}_R)$	548.	\pm	19.0	16.0	
$m(\widetilde{u}_L),m(\widetilde{d}_L)$	564., 570.	\pm	17.4	9.8	
$m(\widetilde{s}_L), m(\widetilde{c}_L)$	570., 564.		17.4	9.8	
$m(\widetilde{b}_1)$	514.	\pm	7.5	5.7	
$m(\widetilde{b}_2)$	539.		7.9	6.2	
$m(\widetilde{t}_1)$	401.		(> 270)		2.0
$\overline{m(\widetilde{g})}$	611.	\pm	8.0	6.5	


masses

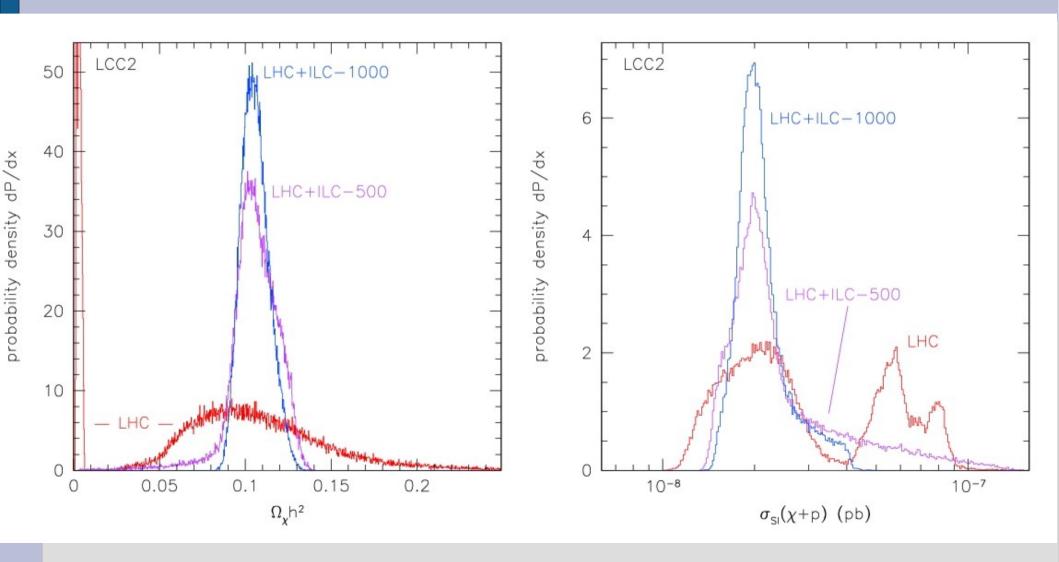
(Weiglein et al., Phys. Rep., 2006)

Results: LCC1

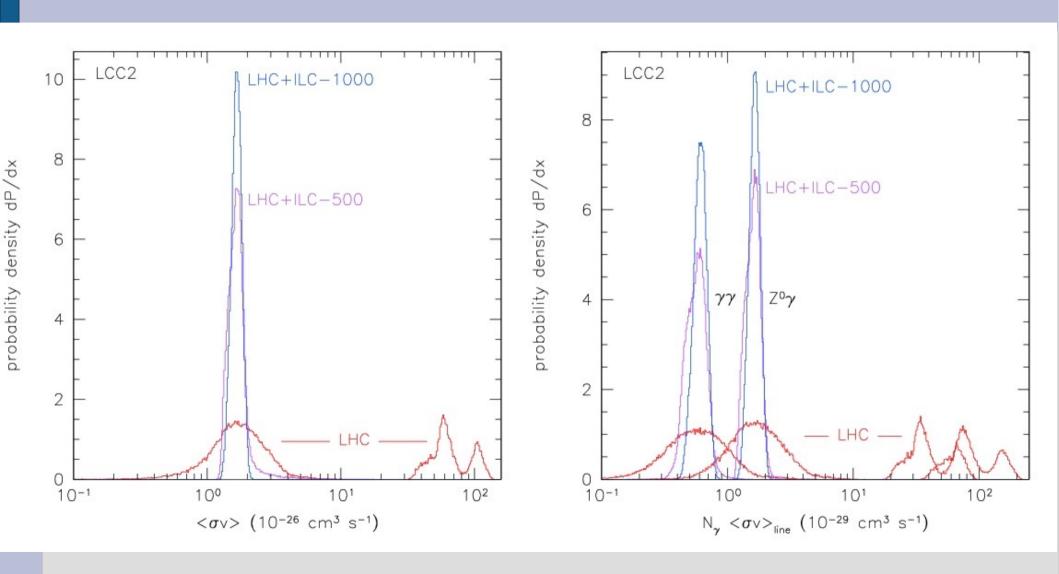
- "Bulk" region: most superpartners are light
 - LHC discovers 3 neutralinos, gluino, all squarks except stops, all sleptons except heavy stau, light Higgs boson
 - ILC 500 discovers heavy stau, light chargino, electron sneutrino, production cross sections
 - ILC TeV discovers heavy chargino, light stop, heavy Higgs
- In this case alone, the ILC-TeV can infer relic density with comparable precision to future CMB measurements (Planck satellite, 0.5% accuracy)
- Direct detection dominated by heavy Higgs need this measurement (ILC TeV) or constraint from e.g. SuperCDMS
- Annihilation cross section is small dominated by b bbar with large helicity suppression


LCC1: Prediction of Relic Density and Detection Cross Section

Results: LCC2


- "Focus point" region: gauginos, higgsinos are light, sfermions are all inaccessible to any collider
 - LHC discovers 3 neutralinos, gluino, light higgs
 - **→ ILC 500 discovers light chargino**
 - **→ ILC TeV discovers heavy chargino, 4th neutralino**
- Relic density estimate has 10% accuracy with ILC TeV
- Direct detection is dominated by light Higgs
- Annihilation cross section is large dominated by W pairs
 - promising for gamma ray experiments

LCC2: Probability Islands @ LHC



Edward A. Baltz (KIPAC) SLAC DOE Review June 6th, 2006

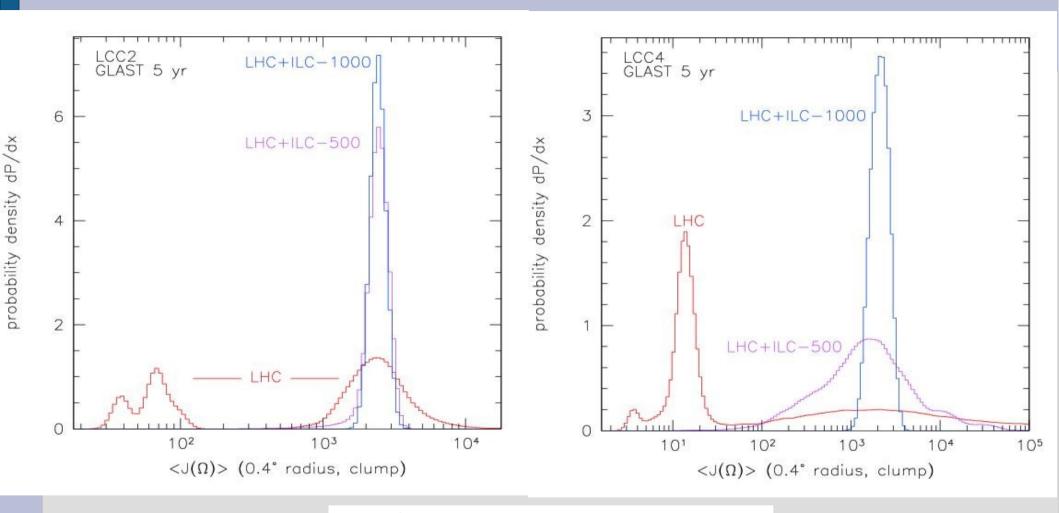
LCC2: Prediction of Relic Density and Detection Cross Section

LCC2: Gamma Rays

The Situation in 2012 for LCC2

- LHC has seen missing energy events, and measured masses for new particles including a dark matter candidate
 - What is the underlying theory? Spins are difficult to measure.
 - The standard cosmology chooses the SUSY bino solution
- GLAST has obtained a 4+ year sky survey, and has observed anomalous gamma ray sources
 - Mass is in the same range
 - Evidence for dark matter clustering?
- Direct detection experiments have detected ~70 events, measured mass to 30%
 - Mass is consistent with LHC
 - Measure the local dark matter density, assuming the SUSY solution

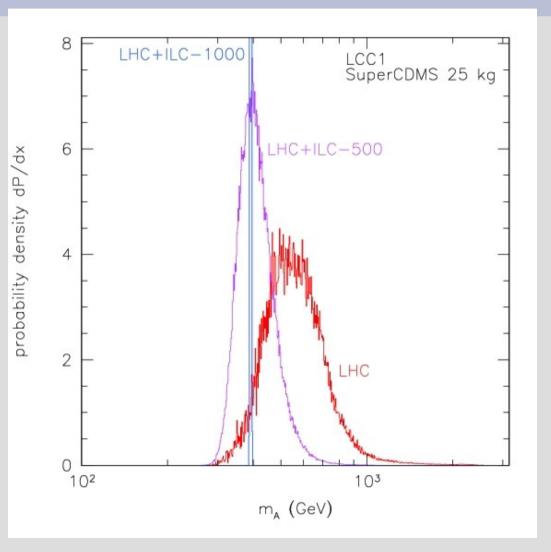
Combination of Collider and Astrophysical Data


- ILC verifies that the underlying model is SUSY
- ILC chooses the correct SUSY solution
- ILC-500 and ILC-TeV determine the SUSY parameters with increasing precision
- Explore the implications for astrophysics

Local Flux of Neutralinos

determine WIMP flux with no astrophysical / cosmological assumptions

Dark Matter Clustering LCC2 LCC4



$$J \propto \int dr \ \rho^2$$
, $N_{\gamma} \propto J \langle \sigma v \rangle / m^2$

determine J with no astrophysical / cosmological assumptions

Astrophysical Prediction for Particle Physics

H, A can only be directly discovered at the ILC-1000, direct detection provides strong evidence before this

Broader Perspective on Astrophysical Experiments

- Direct detection cross sections vary widely, local halo density uncertain at the factor of 2 level
- Annihilation cross sections are near maximal for "half" of SUSY models, predictions for density squared vary over many orders of magnitude
- For "standard" astrophysical assumptions, there are SUSY models exhibiting all possibilities, ca. 2012:
 - WIMPs visible only to GLAST
 - WIMPs visible only to direct detection
 - WIMPs visible to both
 - WIMPs visible to neither

Summary

- Solving the dark matter problem requires both detecting dark matter in the galaxy and studying its properties in the laboratory
- All approaches are needed:
 - direct detection
 - indirect detection
 - accelerators
- We can both learn fundamental physics astrophysically, and learn astrophysics from colliders