BaBar Computing

Gregory Dubois-Felsmann, SLAC BaBar Computing Coordinator

SLAC DOE High Energy Physics Program Review

7 June 2006

Overview

- The BaBar Computing Task
 - Data Volume
 - The Data Model
 - Distributed Computing Infrastructure
 - SLAC-Provided Resources
- Data Processing Pipeline
 - Online
 - Calibration, Reconstruction
 - Skimming
 - Simulation
 - Data Distribution
 - Data Access
 - Use of Grid Technologies
- Current Activities
- Future Plans

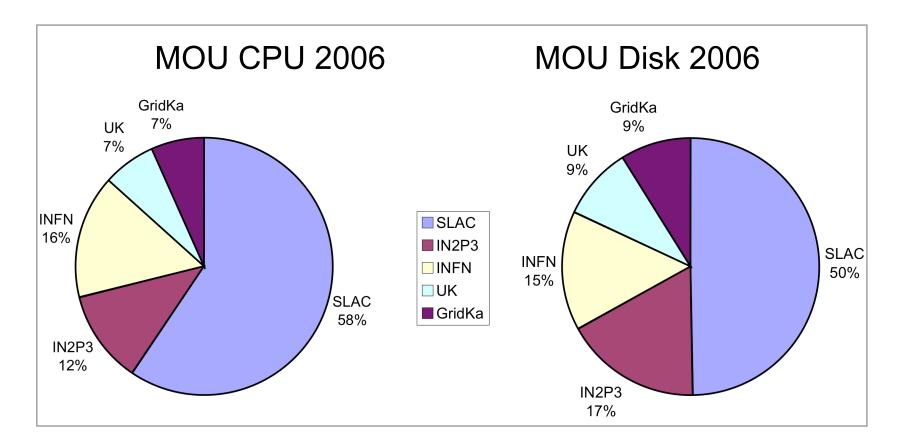
The BaBar Computing Task

- What must be accomplished:
 - Accumulate physics data from the detector
 - Acquire it, filter it, and record it while monitoring its quality
 - Calibrate and reconstruct it
 - Generate corresponding simulated data
 - Using the recorded history of the condition of the detector...
 - Generate and reconstruct simulated events (globally distributed)
 - Divide all the data into skims for convenient access
 - Distribute it to many sites
 - Provide an analysis environment
 - A software environment to be run at all sites
 - Substantial physical resources at major sites

Data Volume

- Rates:
 - Output from the detector:
 - Typically ~2000-2500 events/s at present 1*10³⁴ lumi
 - Recently ~33-40 kB/event (*BaBar* custom binary format)
 - ~250-350 events/s selected by Level 3 trigger (~1/7)
 - Output of reconstruction:
 - ~1/3 of events selected as "AllEvents" data for analysis
 - ~3-3.5 kB "micro" & ~6.5-7.3 kB "mini" (separate files)
 - Bulk size averaged over history of experiment:
 - Micro: 44 GB/fb⁻¹; Mini: 81 GB/fb⁻¹
 - Simulation:
 - Larger: events include truth data; BBbar generated at x3 multiple
 - Micro: 89 GB/fb⁻¹; Mini: 126 GB/fb⁻¹

The Data Model

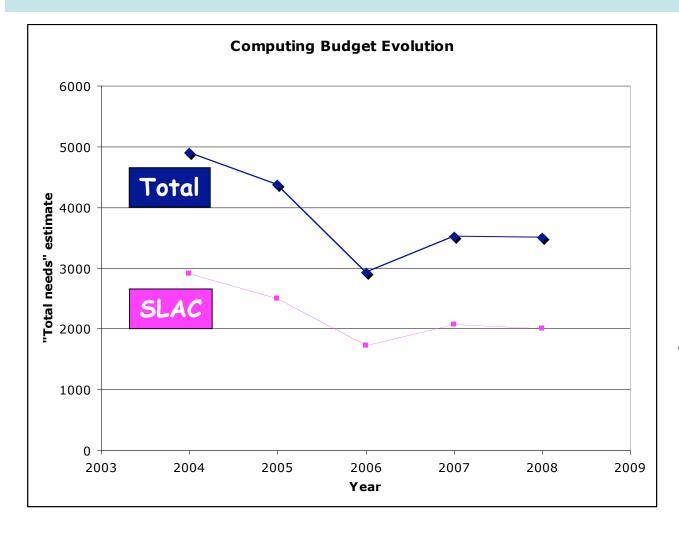

- After Computing Model 2 (CM2) re-engineering:
 - Reconstructed (beam & simulated) data:
 - ROOT trees, composed of *BaBar*-specific data objects
 - Optionally striped across multiple files by *component* (micro, mini, truth, ...)
 - Copies of events can be done by value or by reference (selectable by component)
 - ~140 TB by end of this year
 - Data skimmed for convenience of use & distribution
 - Currently ~215 skims (170 "deep copy", 35 pointer)
 - Pointer skims used for largest selection fractions
 - Deep-copy skims can be exported to small sites
 - Convenience comes at a cost: Total size of skims is about 5.1x larger than micro
 - ~300 TB by end of this year

Distributed Computing Infrastructure

- *BaBar* computing resources are distributed
 - SLAC
 - Four "Tier A" centers supporting both central production and user analysis
 - IN2P3 (Lyon, France)
 - RAL (Rutherford Lab, UK)
 - INFN (Padova and CNAF/Bologna, Italy)
 - GridKa (Karlsruhe, Germany)
 - A total of up to ~40 laboratory and university sites running the BaBar simulation
 - "Tier C" sites ranging from large departmental clusters to users' laptops

Tier-A Computing Resource Commitments

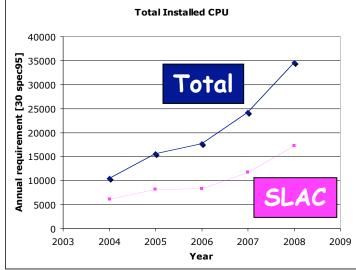
• Proportions of commitments...

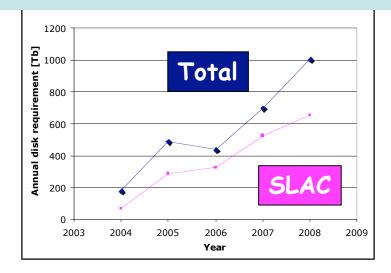

SLAC and Tier A Resources

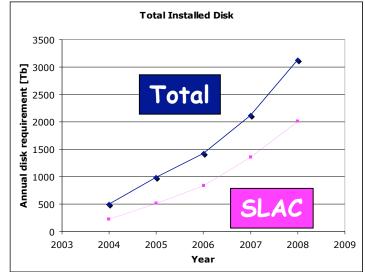
• Some numbers:

2006 Commitments						
Site	CPU (SLAC CPU-weeks)	Disk (TB = 2 ⁴⁰ bytes)				
IN2P3	2580	205				
INFN	3407	176				
υκ	1450	110				
GridKa	1493	104				
SLAC	13029	587				
Total	21959	1182				

- Funding for SLAC *BaBar* computing hardware is shared between DOE and the collaborating national agencies
 - International Finance Committee mechanism supervises this
 - Offsetting credit is given for national contributions to Tier A centers


Predicted evolution of computing budget




Dip in budget is caused by difference between anticipated and delivered luminosity in 2005

Installed computing capacity

2006.6.7

SLAC-Provided Staffing

SLAC staffing for B Factory

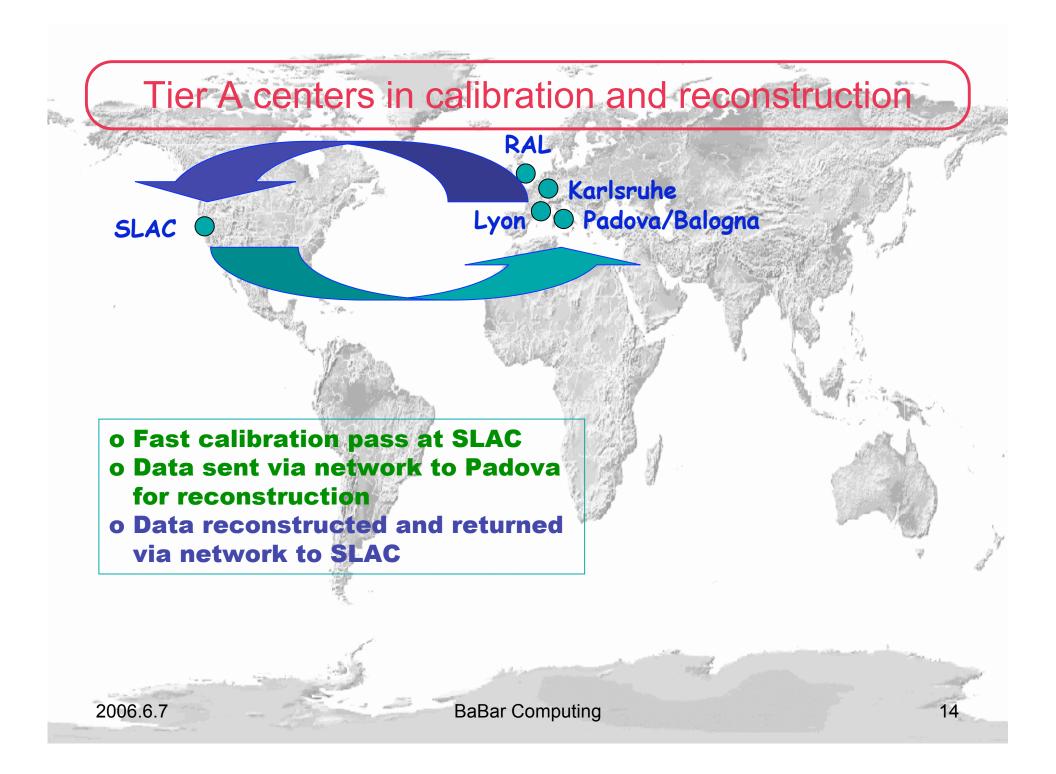
		Phys	Comp Prof	Eng	Techs	Admin	Students [1]	Others	TOTAL
FY05	BaBar PEP-II	39 35	50 23	18 118	22 124	21 20	1 3	14 53	165 376
	FY05 Total SL	226	137	201	204	151	35	137	1,091
FY06	BaBar PEP-II [2]	34 36	48	16 101	19 127	18 21	1 2	14 49	150 358
	FY06 Total SL	217	140	177	196	140	41	123	1,035
FY07	BaBar PEP-II [2]								144 325
	FY07 Total SLAC	2							1,020
FY08	BaBar PEP-II [2]								142 320
	FY08 Total SLAC	2							985

SLAC B-Factory Staffing Level (FTE's)

[1] Graduate Students are Stanford University Assistants who typically have half-time appointments, i.e. 0.5 FTE each.

[2] FY06 is the first year of a multiple-year transition of linac operations to BES. PEP-II FTE's include those supported from BES linac operations funding.

(From D. MacFarlane's presentation at 2006 Operations Review)


1

Data Processing Pipeline

- Online
- Calibration, Reconstruction
- Skimming
- Simulation
- Data Distribution

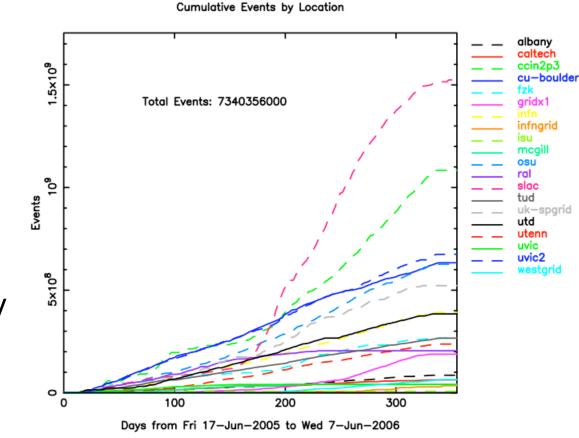
Online

- Online computing group now mostly from SLAC
 - Management as well as most development and operational staffing
- Online system provides
 - Data acquisition: front-end readout, feature extraction, event building, software triggering (Level 3), data logging
 - Rates and volumes as mentioned above
 - Data quality monitoring
 - Detector operation (slow control and run control)
 - Configuration and operational status and conditions databases
- Infrastructure
 - O(100) computers (compute, file, database, console servers, workstations...)
 - Gigabit Ethernet networks for event building, file service backbone, link to SCCS; switched 100 Mb for rest of systems
 - Release management, user environment for development
- Data logged finally transferred to HPSS at SCCS

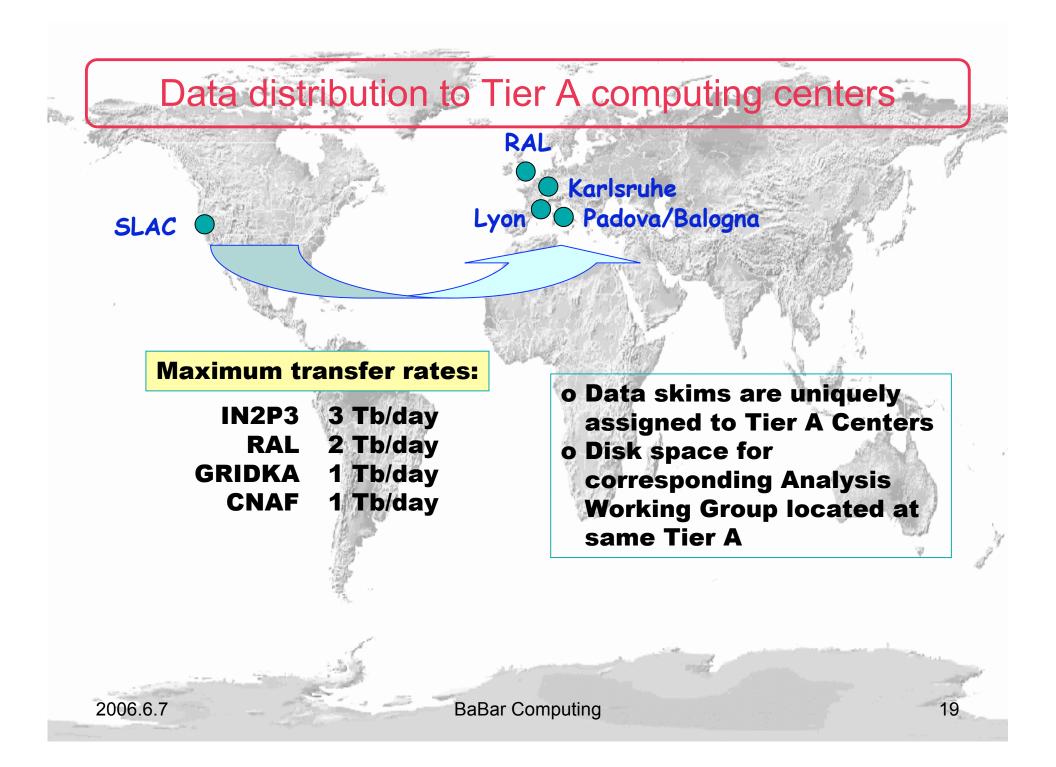
Calibration, Reconstruction

- Calibration
 - Calibrations for a run needed before full reconstruction
 - Some timing and beam position parameter change rates require this
 - Based on a small subset of simple, clean events
 - Bhabhas, dimuons, ...
 - Selected at an approximately constant luminosity-independent rate (~7Hz) to provide sufficient events (currently 2-3% of L3)
 - Selected in the online system and written to a separate file
 - Processed by the full reconstruction executable
 - Single-threaded as constants are fed forward ("rolling")
 - Possible to execute on a subset of the SLAC CPU farm
 - Typically 10-15 nodes
 - Additional subfarms maintained for reprocessing and testing
 - Normally completed within 2.5-3 hours after completion of DAQ

Calibration, Reconstruction


- Reconstruction
 - Raw data are exported continuously to Padova site
 - Permanently archived there as a redundant copy
 - Constants resulting from calibration pass are exported in batches
 - Multiple runs can be processed in parallel
 - No feed-forward dependencies full event independence
 - Allows use of multiple, smaller farms alleviates scaling problems
 - Plenty of capacity for reprocessing
 - Current maximum is ~2 fb⁻¹/day (c.f. 0.737 fb⁻¹ 24-hour record to date)
 - Overcapacity planned to be shifted to skimming shortly
 - Full reconstruction executable applies filtering
 - Reduces processing power required as well as output sample size
 - Retains ~1/3 of input events from Level 3
 - Output in ROOT files in CM2 data format
 - Typically completed in ~1.5 days, but very tolerant of outages
 - Outputs exported continuously back to SLAC

Skimming


- Data skimmed for convenience of use & distribution
 - Currently ~215 skims (170 "deep copy", 35 pointer)
 - Pointer skims used for largest selection fractions
 - Deep-copy skims can be exported to small sites
 - Convenience comes at a cost:
 Total size of skims is about 5.1x larger than micro
 - ~300 TB by end of this year
- Skim cycles 3-4 times/year
 - Want to keep latency low to enable new analyses to start quickly

Simulation

- Full resimulation pass under way
 - GEANT 4 v6-based core
- Distributed over network of 20-40 universities and labs
- All data returned to SLAC for skimming
 - GridKa for uds continuum
- Distributed to sites by AWG assignment

Tier A assignments

Each AWG is hosted by a Tier-A:

Tier-A	AWG	
<u>SLAC</u>	AllEventsSkim, Breco, LeptBC, PID, SemiLep, Tracking, TauQED	
<u>Bologna</u>	AllEventsSkim, Charm	
<u>IN2P3</u>	AllEventsSkim, Charmonium, PartSpec, RadPenguin, ChlsTwoBody	
<u>GridKa</u>	TDBC	
RAL	ChlsQ2Body, ChlsThreeBody	

Use of Grid Technologies

- Grid technologies beginning to be used to support BaBar
- Established: simulation
 - ~25-30 Mevents/week of total ~200 Mevents/week capacity provided by Grid systems in UK, Italy, Canada
 - Planning to increase utilization in future, especially when Objectivity phase-out is complete
- Nearing operational status: skimming
 - Developing capability to do skimming of simulated data on Grid
 - UK "Tier B" resources: Manchester, 2000 nodes; possibly others later
- Not expecting to provide general user analysis support

Current Activities

- Reprocessing
 - In final stages of completing full reprocessing of all data
 - First all-CM2 processing cycle
 - Reprocessing essentially complete
 - Generated corresponding ~7.3 billion simulated events
 - Finishing last ~1% of skimming
- Data-taking
 - In the midst of delivering June 1 data to analysts by next week to meet internal ICHEP deadlines
 - Additional data-taking through August ~21
- Skimming
 - Starting two new skim cycles, one now, one in ~2-3 months with a test cycle starting now

- Online farm upgrade
 - Current online farm (worker nodes and event-build switch):
 - Supports Level 3 trigger and online data quality monitoring
 - Reaching end of its hardware lifetime cycle
 - Likely to reach processing capacity limit around BaBar's highest luminosities
 - IFC (1/2006) approved online farm upgrade (\$400K)
 - New high-capacity network switch, all gigabit-Ethernet
 - O(50) current-model AMD Opteron dual-CPU dual-core 1U workers
 - Miscellaneous server and disk capacity improvements
 - Will install during upcoming shutdown
 - Switch acquisition in progress
 - Farm node acquisition linked with next round of CPU acquisitions for SLAC computing center

- Completion of phase-out of Objectivity
 - Non-event-store applications
 - Configuration, Ambient, Calibration (Spatial, Temporal) databases all migrated to ROOT data format and ROOT (and mySQL) database framework
 - Will switch over to the non-Objectivity versions in 2006 shutdown
 - Conditions database partially migrated
 - All conditions needed for data analysis available
 - Preparing to put this into production
 - Remaining conditions still require significant engineering effort
 - Required for simulation, reconstruction, online
 - On tight timetable to still be able to put in production for Run 6
 - Additional engineering effort (physicist or comp. pro.) would be helpful

- Replacement of mass storage system at SLAC
 - Current STK multi-silo system has ~15-year history
 - Regular upgrades to drives, control software
 - Finally reaching end of its support lifetime
 - Replacement needed
 - For *BaBar* needs alone as well as for SLAC's further projects
 - Planning to move to STK 10000-series system
 - Acquisition of first silo late this year or early next
 - Still thinking about whether to recopy all data to latest high-capacity tapes
 - Would probably take O(1 year) to interleave with other demands on the mass storage system

- After end of data
 - Expect ~two years of full-scale analysis effort with extensive central computing activities
 - Planning to maintain 3-4 skim cycles/year to keep latency low for new analyses
 - Need to accommodate well-motivated extensions of filter to look at classes of events not originally envisioned
 - Simulation capability must be maintained
 - Planning for possibility of one post-shutdown full reprocessing cycle if sufficiently compelling improvements in reconstruction are developed
 - Full reprocessing would require full resimulation pass
 - Should all be doable with infrastructure in place at end of data
 - Assumes retention of resources at Tier-A sites, network of simulation hosts
 - Continued funding will be needed to
 - Purchase tapes to store output of skimming and user-generated datasets
 - Replace hardware on its ordinary ~4-year lifetime cycle
 - Expect to support a substantially lesser effort for several more years
 - Will need to think about long-term archiving of datasets