BaBar Computing

Gregory Dubois-Felsmann, SLAC
BaBar Computing Coordinator

SLAC DOE High Energy Physics Program Review

7 June 2006
Overview

• The *BaBar* Computing Task
 – Data Volume
 – The Data Model
 – Distributed Computing Infrastructure
 – SLAC-Provided Resources

• Data Processing Pipeline
 – Online
 – Calibration, Reconstruction
 – Skimming
 – Simulation
 – Data Distribution
 – Data Access
 – Use of Grid Technologies

• Current Activities
• Future Plans
The *BaBar* Computing Task

- What must be accomplished:
 - Accumulate physics data from the detector
 - Acquire it, filter it, and record it while monitoring its quality
 - Calibrate and reconstruct it
 - Generate corresponding simulated data
 - Using the recorded history of the condition of the detector...
 - Generate and reconstruct simulated events (globally distributed)
 - Divide all the data into skims for convenient access
 - Distribute it to many sites
 - Provide an analysis environment
 - A software environment to be run at all sites
 - Substantial physical resources at major sites
Data Volume

• Rates:
 – Output from the detector:
 • Typically ~2000-2500 events/s at present 1×10^{34} lumi
 • Recently ~33-40 kB/event (BaBar custom binary format)
 • ~250-350 events/s selected by Level 3 trigger (~1/7)
 – Output of reconstruction:
 • ~1/3 of events selected as “AllEvents” data for analysis
 • ~3-3.5 kB “micro” & ~6.5-7.3 kB “mini” (separate files)
 • Bulk size averaged over history of experiment:
 – Micro: 44 GB/fb$^{-1}$; Mini: 81 GB/fb$^{-1}$
 • Simulation:
 – Larger: events include truth data; BBbar generated at x3 multiple
 – Micro: 89 GB/fb$^{-1}$; Mini: 126 GB/fb$^{-1}$
The Data Model

• After Computing Model 2 (CM2) re-engineering:
 – Reconstructed (beam & simulated) data:
 • ROOT trees, composed of BaBar-specific data objects
 • Optionally striped across multiple files by component (micro, mini, truth, ...)
 • Copies of events can be done by value or by reference (selectable by component)
 • ~140 TB by end of this year
 – Data skimmed for convenience of use & distribution
 • Currently ~215 skims (170 “deep copy”, 35 pointer)
 – Pointer skims used for largest selection fractions
 – Deep-copy skims can be exported to small sites
 • Convenience comes at a cost:
 Total size of skims is about 5.1x larger than micro
 • ~300 TB by end of this year
Distributed Computing Infrastructure

• *BaBar* computing resources are distributed
 – SLAC
 – Four “Tier A” centers supporting both central production and user analysis
 • IN2P3 (Lyon, France)
 • RAL (Rutherford Lab, UK)
 • INFN (Padova and CNAF/Bologna, Italy)
 • GridKa (Karlsruhe, Germany)
 – A total of up to ~40 laboratory and university sites running the BaBar simulation
 – “Tier C” sites ranging from large departmental clusters to users’ laptops
Tier-A Computing Resource Commitments

• Proportions of commitments…

![MOU CPU 2006 Pie Chart](chart1)

![MOU Disk 2006 Pie Chart](chart2)
SLAC and Tier A Resources

• Some numbers:

<table>
<thead>
<tr>
<th>Site</th>
<th>CPU (SLAC CPU-weeks)</th>
<th>Disk (TB $= 2^{40}$ bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN2P3</td>
<td>2580</td>
<td>205</td>
</tr>
<tr>
<td>INFN</td>
<td>3407</td>
<td>176</td>
</tr>
<tr>
<td>UK</td>
<td>1450</td>
<td>110</td>
</tr>
<tr>
<td>GridKa</td>
<td>1493</td>
<td>104</td>
</tr>
<tr>
<td>SLAC</td>
<td>13029</td>
<td>587</td>
</tr>
<tr>
<td>Total</td>
<td>21959</td>
<td>1182</td>
</tr>
</tbody>
</table>

• Funding for SLAC BaBar computing hardware is shared between DOE and the collaborating national agencies
 – International Finance Committee mechanism supervises this
 – Offsetting credit is given for national contributions to Tier A centers
Predicted evolution of computing budget

Dip in budget is caused by difference between anticipated and delivered luminosity in 2005.
Installed computing capacity

Annual disk requirement [Tb]

Year

Annual requirement [30 spec95]

Year

Installed Disk Increments

Year

Installed CPU Increments

Year

SLAC

Total

SLAC
SLAC-Provided Staffing

SLAC staffing for B Factory

<table>
<thead>
<tr>
<th>Year</th>
<th>Phys</th>
<th>Comp Prof</th>
<th>Eng</th>
<th>Techs</th>
<th>Admin</th>
<th>Students</th>
<th>Others</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>39</td>
<td>50</td>
<td>18</td>
<td>22</td>
<td>21</td>
<td>1</td>
<td>14</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>23</td>
<td>118</td>
<td>124</td>
<td>20</td>
<td>3</td>
<td>53</td>
<td>376</td>
</tr>
<tr>
<td>FY05 Total SL</td>
<td>226</td>
<td>137</td>
<td>201</td>
<td>204</td>
<td>151</td>
<td>35</td>
<td>137</td>
<td>1,091</td>
</tr>
<tr>
<td>2006</td>
<td>34</td>
<td>48</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>21</td>
<td>101</td>
<td>127</td>
<td>21</td>
<td>2</td>
<td>49</td>
<td>358</td>
</tr>
<tr>
<td>FY06 Total SL</td>
<td>217</td>
<td>140</td>
<td>177</td>
<td>196</td>
<td>140</td>
<td>41</td>
<td>123</td>
<td>1,035</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY07 Total SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,020</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY08 Total SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>985</td>
</tr>
</tbody>
</table>

1. Graduate Students are Stanford University Assistants who typically have half-time appointments, i.e. 0.5 FTE each.
2. FY06 is the first year of a multi-year transition of linac operations to BES. PEP-II FTE's include those supported from BES linac operations funding.

(From D. MacFarlane’s presentation at 2006 Operations Review)
Data Processing Pipeline

- Online
- Calibration, Reconstruction
- Skimming
- Simulation
- Data Distribution
Online

• Online computing group now mostly from SLAC
 – Management as well as most development and operational staffing

• Online system provides
 – Data acquisition: front-end readout, feature extraction, event building, software triggering (Level 3), data logging
 • Rates and volumes as mentioned above
 – Data quality monitoring
 – Detector operation (slow control and run control)
 – Configuration and operational status and conditions databases

• Infrastructure
 – O(100) computers (compute, file, database, console servers, workstations...)
 – Gigabit Ethernet networks for event building, file service backbone, link to SCCS; switched 100 Mb for rest of systems
 – Release management, user environment for development

• Data logged finally transferred to HPSS at SCCS
Tier A centers in calibration and reconstruction

- Fast calibration pass at SLAC
- Data sent via network to Padova for reconstruction
- Data reconstructed and returned via network to SLAC
Calibration, Reconstruction

• Calibration
 – Calibrations for a run needed before full reconstruction
 • Some timing and beam position parameter change rates require this
 – Based on a small subset of simple, clean events
 • Bhabhas, dimuons, ...
 • Selected at an approximately constant luminosity-independent rate (~7Hz) to provide sufficient events (currently 2-3% of L3)
 • Selected in the online system and written to a separate file
 – Processed by the full reconstruction executable
 • Single-threaded as constants are fed forward (“rolling”)
 – Possible to execute on a subset of the SLAC CPU farm
 • Typically 10-15 nodes
 – Additional subfarms maintained for reprocessing and testing
 • Normally completed within 2.5-3 hours after completion of DAQ
Calibration, Reconstruction

- **Reconstruction**
 - Raw data are exported continuously to Padova site
 - Permanently archived there as a redundant copy
 - Constants resulting from calibration pass are exported in batches
 - Multiple runs can be processed in parallel
 - No feed-forward dependencies - full event independence
 - Allows use of multiple, smaller farms - alleviates scaling problems
 - Plenty of capacity for reprocessing
 - Current maximum is ~2 fb$^{-1}$/day (c.f. 0.737 fb$^{-1}$ 24-hour record to date)
 - Overcapacity planned to be shifted to skimming shortly
 - Full reconstruction executable applies filtering
 - Reduces processing power required as well as output sample size
 - Retains ~1/3 of input events from Level 3
 - Output in ROOT files in CM2 data format
 - Typically completed in ~1.5 days, but very tolerant of outages
 - Outputs exported continuously back to SLAC
Skimming

• Data skimmed for convenience of use & distribution
 – Currently ~215 skims (170 “deep copy”, 35 pointer)
 • Pointer skims used for largest selection fractions
 • Deep-copy skims can be exported to small sites
 – Convenience comes at a cost:
 Total size of skims is about 5.1x larger than micro
 – ~300 TB by end of this year

• Skim cycles 3-4 times/year
 – Want to keep latency low to enable new analyses to start quickly
Simulation

• Full resimulation pass under way
 – GEANT 4 v6-based core

• Distributed over network of 20-40 universities and labs

• All data returned to SLAC for skimming
 – GridKa for uds continuum

• Distributed to sites by AWG assignment
Data distribution to Tier A computing centers

- Data skims are uniquely assigned to Tier A Centers
- Disk space for corresponding Analysis Working Group located at same Tier A

Maximum transfer rates:

<table>
<thead>
<tr>
<th>Institution</th>
<th>Transfer Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN2P3</td>
<td>3 Tb/day</td>
</tr>
<tr>
<td>RAL</td>
<td>2 Tb/day</td>
</tr>
<tr>
<td>GRIDKA</td>
<td>1 Tb/day</td>
</tr>
<tr>
<td>CNAF</td>
<td>1 Tb/day</td>
</tr>
</tbody>
</table>
Tier A assignments

Each AWG is hosted by a Tier-A:

<table>
<thead>
<tr>
<th>Tier-A</th>
<th>AWG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAC</td>
<td>AllEventsSkim, Breco, LeptBC, PID, SemiLep, Tracking, TauQED</td>
<td></td>
</tr>
<tr>
<td>Bologna</td>
<td>AllEventsSkim, Charm</td>
<td></td>
</tr>
<tr>
<td>IN2P3</td>
<td>AllEventsSkim, Charmonium, PartSpec, RadPenguin, ChlsTwoBody</td>
<td></td>
</tr>
<tr>
<td>GridKa</td>
<td>TDBC</td>
<td></td>
</tr>
<tr>
<td>RAL</td>
<td>ChlsQ2Body, ChlsThreeBody</td>
<td></td>
</tr>
</tbody>
</table>
Use of Grid Technologies

• Grid technologies beginning to be used to support BaBar

• Established: simulation
 – ~25-30 Mevents/week of total ~200 Mevents/week capacity provided by Grid systems in UK, Italy, Canada
 – Planning to increase utilization in future, especially when Objectivity phase-out is complete

• Nearing operational status: skimming
 – Developing capability to do skimming of simulated data on Grid
 • UK “Tier B” resources: Manchester, 2000 nodes; possibly others later

• Not expecting to provide general user analysis support
Current Activities

• Reprocessing
 – In final stages of completing full reprocessing of all data
 • First all-CM2 processing cycle
 • Reprocessing essentially complete
 • Generated corresponding ~7.3 billion simulated events
 • Finishing last ~1% of skimming

• Data-taking
 – In the midst of delivering June 1 data to analysts by next week to meet internal ICHEP deadlines
 – Additional data-taking through August ~21

• Skimming
 – Starting two new skim cycles, one now, one in ~2-3 months with a test cycle starting now
Future Plans

• Online farm upgrade
 – Current online farm (worker nodes and event-build switch):
 • Supports Level 3 trigger and online data quality monitoring
 • Reaching end of its hardware lifetime cycle
 • Likely to reach processing capacity limit around BaBar’s highest luminosities
 – IFC (1/2006) approved online farm upgrade ($400K)
 • New high-capacity network switch, all gigabit-Ethernet
 • O(50) current-model AMD Opteron dual-CPU dual-core 1U workers
 • Miscellaneous server and disk capacity improvements
 – Will install during upcoming shutdown
 • Switch acquisition in progress
 • Farm node acquisition linked with next round of CPU acquisitions for SLAC computing center
• Completion of phase-out of Objectivity
 – Non-event-store applications
 – Configuration, Ambient, Calibration (Spatial, Temporal) databases all migrated to ROOT data format and ROOT (and mySQL) database framework
 • Will switch over to the non-Objectivity versions in 2006 shutdown
 – Conditions database partially migrated
 • All conditions needed for data analysis available
 – Preparing to put this into production
 • Remaining conditions still require significant engineering effort
 – Required for simulation, reconstruction, online
 – On tight timetable to still be able to put in production for Run 6
 – Additional engineering effort (physicist or comp. pro.) would be helpful
Future Plans

• Replacement of mass storage system at SLAC
 – Current STK multi-silo system has \(~15\)-year history
 • Regular upgrades to drives, control software
 • Finally reaching end of its support lifetime
 – Replacement needed
 • For \textit{BaBar} needs alone as well as for SLAC’s further projects
 – Planning to move to STK 10000-series system
 • Acquisition of first silo late this year or early next
 • Still thinking about whether to recopy all data to latest high-capacity tapes
 – Would probably take \(O(1\) year\) to interleave with other demands on the mass storage system
Future Plans

• After end of data
 – Expect ~two years of full-scale analysis effort with extensive central computing activities
 • Planning to maintain 3-4 skim cycles/year to keep latency low for new analyses
 • Need to accommodate well-motivated extensions of filter to look at classes of events not originally envisioned
 • Simulation capability must be maintained
 • Planning for possibility of one post-shutdown full reprocessing cycle if sufficiently compelling improvements in reconstruction are developed
 – Full reprocessing would require full resimulation pass
 – Should all be doable with infrastructure in place at end of data
 • Assumes retention of resources at Tier-A sites, network of simulation hosts
 • Continued funding will be needed to
 – Purchase tapes to store output of skimming and user-generated datasets
 – Replace hardware on its ordinary ~4-year lifetime cycle
 – Expect to support a substantially lesser effort for several more years
 • Will need to think about long-term archiving of datasets