ATLAS Computing at SLAC

- 1. Tier 2 Computing Center
- 2. Parameterized Shower Simulation

Tier 2 Computing Center

- LHC tiered computing architecture.
- Specific roles and challenges for Tier 2.
- SLAC's core competence.
- Proposal timeline.
- Western Tier 2 proposal.
- Connection to Analysis Support Center.

Typical LHC Tiered Structure

- Located at CERN.
- Archiving and distribution of RAW data.
- Prompt reconstruction of calibration and express streams.
- First pass processing of primary event stream.
- Access granted only to central production group and those providing first-pass calibration.

- Approximately 10 world-wide.
 - One in U.S. at BNL.
- Host and provide access to subset of RAW.
- Reprocess, provide ATLAS-wide access to derived datasets, as well as simulated data samples from Tier 2's.
- Part of calibration processing capacity.
- Access restricted to production managers of working groups and reprocessing group.

- Hosting of datasets.
 - Physics samples in accordance with local interest.
 - Special datasets for code development.
- Access to Tier 2 available to all ATLAS members. In practice, heightened access according to <u>local policy</u>.
- Analysis capacity for physics working groups.
- Significant calibration role following <u>local</u> <u>interests</u>.
- Simulation capacity for the experiment.

- Typically a university group.
- Store user ntuples of local interest.
- Should be Grid-enabled but can work off Grid.
- Neither centrally planned nor centrally controlled.

User analyses requiring access to ATLAS-wide datasets (such as RAW, AOD and TAG) rely almost exclusively on Tier 2 centers.

Simulation Production

- Very CPU intensive.
- Modest storage needs.
- Managed activity.
- Understood, controlled and optimized data movement.
- Relatively easy to deal with.

Calibration

- Expect to perform Inner Detector calibration and alignment.
- Matches detector involvement and common interest of traditional SLAC user groups, e.g.
 - Pixel detector LBNL and SLAC.
 - Semiconductor Tracker UCSC.
- More challenging than simulation production.
 - Workload often more variable.
 - Access patterns less predictable.

Physics Analysis

- Analysis capacity concentrated in Tier 2's.
 - Tiers 0 and 1 primarily production sites.
- "Chaotic" data access patterns.
 - Data intensive.
 - Many users and jobs in parallel.
 - Data movement difficult/impossible to predict and optimize.
- Major challenge in scaling.

A truly functional Tier 2 requires much more than just keeping a bunch of boxes running.

Why Tier 2 at SLAC?

- Support the user community.
 - Function of a national lab.
- Strong track record in BaBar.
 - Dealt with similar data-intensive analysis issues.
 - Real-life network utilization.
 - Long-time participant and leader in Grid.
 - Cooperative operation with many other sites.
- Continue to innovate (e.g. PetaCache project).

Network Utilization

Style: Standard Meeting (multi sessions) full display all day

R .			
Niddleware Security Group Meeting	Monday 05 June 2006 09:00-	[last update: Wednesd Kick-off	ay 07 June 2006] Bob Cowles and Ake Edlund
Date/Time: from Monday 05 June 2006 (09:00) to Tuesday 06 June 2006 (16:00) Location: SLAC	Monday 05 June 2006 09:15- >10:30 Monday 05 June 2006 11:30-	<u>glexec / managing</u> <u>dynamic change of</u> <u>users at runtime</u> <u>WS-naming effort in</u> ger	Frank Siebenlist
Chairperson: <u>Bob Cowles, Ake Edlund</u> Description: Goal with meeting: Update on current global security architecture work. Discuss future global security architecture work.	Monday 05 June 2006 12:00- >13:00 Monday 05 June 2006 13:00- >14:00 Monday 05 June 2006 14:00-	Deb Agarwal & Brian. Tierney. Lunch Auditing	
The meeting is in the Research Office Buildng (ROB) - building number 48 on the North side of the campus (30- B) on the map http://www2.slac.stanford.edu/maps/ slacarea html≠oridMan	>17:00 Tuesday 06 June 2006 09:00- >13:00 Tuesday 06 June 2006 13:00- >14:00 Tuesday 06 June 2006 14:00- >16:00 Tuesday 06 June 2006 14:15- >15:45	Security Process and Plans Lunch Authorization - Status and Plans xrootd	Andrew
The meeting room is Redwood A-B on the south side of the building. Material: I list of attendees	>15:45 Tuesday 06 June 2006 15:45- >16:00	Round-up, summary, what's next	<u>Hanushevsky</u> Bob Cowles and Ake Edlund

Monday 05 June 2006

Kick-off (2006-06-05 09:00->09:15)

Chairperson: Bob Cowles and Ake Edlund

glexec / managing dynamic change of users at runtime (2006-06-05 09:15->10:30)

09:15 glexec - update (45') (
transparencies)

Gerben Venekamp (NIKHEF, NL)

US ATLAS Tier-2 Timeline

- Three sites chosen in 2005.
 - Northeast (Boston & Harvard).
 - Midwest (Chicago & Indiana).
 - Southwest.
- Two sites to be chosen in 2006.
 - February Call for Proposals.
 - May Proposals due.
 - June Evaluation Committee.
- Decision in July by US ATLAS Managers.
 - Evaluation report.
 - Input from funding agencies.

Western Tier 2 Proposal

- Proposal by SLAC with strong user support.
- Most of Tier 2 funds for dedicated H/W by leveraging existing infrastructure & support.
 - "Lights out" operations for ~10 years.
 - H/W commonality with other projects.
 - Grid experience and expertise.
 - Dedicated and experienced staff in SCCS!
- Scavenge idle resources from other projects.
 - Tier 2 ~15% of BaBar implies significant leveraging potential.

"Western" Tier 2 Community

Western Tier 2 Community

- Participated in proposal writing.
- Members of proposed Advisory Board.

Enthusiastic support of many user groups.

• Other institutions are welcome!

Analysis Support Center (ASC)

- US ATLAS designated three ASC's.
 - BNL.
 - Argonne.
 - LBNL.
- Committed to supporting LBNL in particular.
 - LBNL, SLAC and UCSC form a natural cluster.
 - Overlapping working hours with many institutions.
 - Office and meeting space if needed.
 - Proximity to Western Tier 2 and therefore more responsiveness.

Parameterized Shower Simulation

- Why parameterized showers?
- Why SLAC?
- What are the goals and plans?

Simulation in ATLAS

- Simulation code ~2x to ~10x times slower than planned.
 - Originally planned sample ~20% of real data.
 - Now correspondingly smaller.
- Multiple ways to improve.
 - Code optimization.
 - Shower library.
 - Parameterized shower.

SLAC can contribute in many ways. We can make unique contributions to parameterized shower.

SLAC and GEANT4

- SLAC is a member of GEANT4 Collaboration that provides core code and support.
 - Largest team outside of CERN.
- Extensive core expertise.
 - Deputy Spokesperson and chief architect.
 - Hadronics package coordinator.
- Extensive user expertise at SLAC.
 - BaBar was first major user of GEANT4.
 - Also used by GLAST, LCD, etc.

Parameterized Showers

- Unique capability at SLAC.
 - Core code to enable parameterized showers developed by SLAC GEANT4 member.
 - Relatively new feature.
 - Little user experience in implementation.
- New proposal to ATLAS management.
 - Not in original proposal to join.
 - SLAC expert to mentor and support ATLAS specific implementation effort.
 - Enthusiastic response from ATLAS management.

Plans and Goals

- Short term plan.
 - Manpower found from a US ATLAS group.
 - Engage experts in ATLAS simulation.
 - Engage experts in ATLAS calorimeters.
 - Meeting in early July to kick off the effort.
- Longer term.
 - Develop validation suite.
 - Detector metrics.
 - Physics metrics.
 - Implement and tune parameterization.
- Goal is to converge within a year.

Summary

Tier 2 Computing Center Parameterized Shower Simulation

- Utilize core competence in the Lab.
- Leverage past investments.
- Support the LHC/ATLAS program.
- Support the user community.