ATLAS High Level Trigger

DOE Program Review
SLAC
Experimental Particle Physics Breakout Session
June 7, 2006

Rainer Bartoldus
The ATLAS Trigger

- **LVL1** (hardware) decision based on calorimeters and muon chambers; synchronous at 40 MHz, bunch crossing identification
- **LVL2** (software) (~500 nodes) uses Regions of Interest identified by LVL1; ~2% data at full granularity from all detectors
- **Event Filter** (~1600 nodes) has access to full event and can perform more refined (offline-like) reconstruction
High Level Trigger

- Algorithms
 - Refinement of Trigger Elements / RoI
 - e/gamma, muon, jet/tau/ETmiss, b-tagging
- Steering
 - Stepwise calling of algorithms, stepwise decisions, early reject
- Configuration
 - Must store all information on LVL1 subsystems, HLT algorithms, steering, trigger menu -> consistently
 - Used online and offline (analysis+simulation), “from the pit to the Grid”
 - Must scale to O(1000) nodes
One Major Challenge

- How to deliver the O(30 MB) configuration to the LVL1 clients [no big deal] and to the \(\sim 2000 \) CPUs \(\times n \) cores \(\times m \) processes HLT clients [A BIG DEAL]
- All clients will need this information essentially simultaneously, from an SQL database replica or some sort of cache at the start of a run
- This is an absolutely essential feature of the system; TMK it has not been demonstrated in any experiment, anywhere near that scale
 - If you spent 1s on each node the whole system would take 45 min to configure!
- One of the first areas where SLAC got involved
The BaBar Experience

- Many important challenges in ATLAS/TDAQ right now appear (all too) familiar from a BaBar perspective

 • Trigger Configuration
 - Extremely important to achieve consistency across all pieces of the system, flexibility, accountability, analysis access, simulation

 • Processor Scalability
 - Crucial to manage O(2000) nodes on startup, control, concurrent Online DB access, real-time monitoring

 • Online/Offline release integration
 - Vital to provide coherent, functional releases, manage dependencies

- The current SLAC team has met these before (if not quite at this scale). It's a challenge for us, too
Large Scale Tests

• Goals

 – Determine most efficient technology for accessing the DB from the HLT
 • Speed, reliability, fault tolerance
 – Benchmark existing options
 • FroNtier (DB -> HTTP caching facility, used by CDF/D0)
 • Multi-tiered DB, or Replicas (Oracle, MySQL -> SQLite)
 • Custom-built DB proxy (developed at SLAC)
 – Introduce Framework for collecting/analyzing timing info
 – Develop/run/support medium scale tests at SLAC
Data Access Times

MySQL/Frontier/DbProxy Data Transfer

Query + Transfer Time [ms]

10^3

10^2

10

1

FroNtier

FroNtier (cached)

DbProxy

MySQL

DbProxy (cached)

Network limit

Data Size [bytes]
Online Testbed at SLAC

- \textit{BaBar} decided to replace its Level 3 farm at the end of August
 - 50 dual-CPU 1.4 GHz, 1 GB RAM, 18+2*73 GB disk, two on-board 1 Gbit ethernet ports
- Will be set up as a testbed for ATLAS HLT together with
 - 48+ port switch, Oracle server (2 x 1.5 GHz UltraSparc IIIi, 2 GB RAM, 500 GB Sun T3 Fiber Channel disk array)
 - Perform medium scale benchmarks
 - Use to develop alternative proxy/caching strategies
Online/Offline Integration

- ATLAS Online Software now being added as Projects

- Taking on new Project “DetectorCommon”, initially for LVL1/HLT, but could be used for other subsystems also
 - Holds configuration DB and related software
 - Providing release tools and “Librarian”
b-Tagging at the HLT

- **Example scenario** (already alluded to in Su Dong's talk)
 - At large tan β, MSSM Higgs production via bbH/A is enhanced, while decay to tt, WW, ZZ is suppressed
 - $bbH(bb)$ is an important channel to preserve this signature
 - b-Tagging of the four jets in the EF (using offline algorithms) is now progressing
 - It would be important to attempt b-Tagging already at LVL2
 - But processing limitations are challenging
 - Mastering this will combine pixel expertise with expertise in fast trigger algorithms, performant code, b-tagging
Conclusions

- With the ATLAS High Level Trigger, the SLAC group has found a central, extremely critical, and yet still open (i.e. in need) area for contributions
- HLT is an ideal match to the unique expertise SLAC is bringing to the experiment
- Our involvement is already noticeable before our membership is approved
- In the future, HLT work will benefit from coherency with the pixel effort (e.g. b-tagging at LVL2)
- We are very excited about this opportunity and are taking on some significant responsibilities