Detector R&D in KAPAC

Hiroyasu Tajima
Stanford Linear Accelerator Center
Kavli Institute for Particle Astrophysics and Cosmology

Outline
❖ Compton Camera
❖ SOI detector
❖ Scintillator Polarimeter
❖ Cherenkov Camera

Limited science discussion
Compton Camera Concept

❖ **Concept**
❖ **Reconstruct incident photon direction, energy**
 ✦ Compton kinematics
 \[\cos \theta = 1 + \frac{m_e c^2}{E_1 + E_2} - \frac{m_e c^2}{E_2} \]

❖ **Applications**
❖ **NeXT/SGD (Soft gamma-ray Detector)**
 ✦ Next generation Japanese satellite
 ✦ Soft gamma-ray spectrometer
 • 10 – 300 keV
 ✦ Polarimeter
 • 3% 5\(\sigma\) sensitivity for 0.1 Crab @100ks
 ✦ Complementary with GLAST
❖ **Radiation detection technology**
 ✦ Localizing nuclear material

Detector R&D in KIPAC,
H. Tajima, SLAC DOE HEP Program Review, June 13, 2007
Compton Camera Development

- **Required technologies**
 - **Front-end ASIC**
 - Low noise for fine energy and angular resolution
 - Event selection with Compton kinematics
 - Low power for space application, portable device
 - **High density silicon detector stack**
 - Fabrication technique from HEP and GLAST
 - **High quality high-Z semiconductor detector**
 - CdTe/CdZnTe detectors being developed by collaborators
 - CdTe: ISAS for NeXT/SGD
 - CZT: CalTech for radiation detection technology R&D
Low Noise Low Power ASIC

❖ VATA-series low noise and low power ASIC
 ❖ Originated from VA1TA for KEK HEP experiment
 ❖ Noise optimized for expected capacitance load
 ❖ SEU (single-event upset) tolerant design
 ❖ On-chip ADC in progress for lower power
 ❖ On-chip sparse-data scan for faster readout (next phase)

Detector R&D in KIPAC,
H. Tajima, SLAC DOE HEP Program Review, June 13, 2007
High Density Silicon Detector Stack

- **Detector optimization**
 - **Effect of inactive material**
 - FPC (flexible printed circuit)
 - Mechanical support
 - GLAST expertise
 - **Simulation study**

![Diagram of detector stack](image)

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10.01</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
</tbody>
</table>

Detector R&D in KIPAC, H. Tajima, SLAC DOE HEP Program Review, June 13, 2007
Compton Camera Funding

- **Funding sources**
 - **SLAC/DOE**
 - Design of ASIC (0.1 FTE, ~10 kUSD/year M&S)
 - **Department of Homeland Security**
 - 650 kUSD/2.5 year (0.3 FTE) starting March/2007.
 - ASIC and silicon detector design/fabrication
 - High density assembly development
 - **ISAS/JAXA (Japanese Space Agency)**
 - Fabrication of ASIC for NeXT/SGD
 - **Pending**
 - NASA proposal for solar polarization mission with UC Berkeley/SSL (Space Science Laboratory)
 - Design/Fabrication of ASIC (0.1 FTE, ~200 kUSD)
- **Silicon-On-Insulator**
 - Complex electric circuits realized by 0.15 µm CMOS process
 - Self-trigger X-ray imager
 - Fast sparse-data readout
 - Detector using high-R substrate
 - Independent of low-R silicon for MOS
 - Thick detector possible up to 600 µm
 - Good for hard X-ray and near IR imaging
- **KIPAC is leading Astrophysics application**
- **Fabrication is funded by KEK**
- **Fabrication complete**
PoGO Concept

- Well-type phoswich detector
 - BGO, slow scintillator to veto BG
 - Narrow FOV, low background
 - Pulse shape discrimination to identify hits in fast scintillators
- 217 array of phoswich detectors
 - Large effective area
 - Azimuth angle distribution of Compton scattering

Funding

- KIPAC/Stanford Enterprise fund for M&S
- SLAC/DOE for ~0.3 FTE

Differentiate Crab pulsar models in a 6-hour balloon flight
SpaceWire based Electronics/DAQ

- SpaceWire interconnect standard
 - 200 Mbps, simple network protocol
 - Adopted by NASA, ESA, ISAS/JAXA
- Circuit design at KIPAC, fabricated by ISAS
 - Satisfactory performance at KEK synchrotron beam test
Cherenkov Camera

- Cherenkov camera with large # of pixel
 - Important for future TeV gamma-ray IACTs
 (Imaging Cherenkov Atmospheric Telescopes)
 - Large FOV (field-of-view)
 - Better angular resolution
 - Complementary to GLAST GeV gamma-ray science
 - ~1k ch. ⇒ 10k–100k ch. (x 50–100 telescopes)
 - Cost, power reduction and better reliability
- Leadership role expected in photon detector/electronics R&D (SLAC has long history in Cherenkov imaging with BaBar/DIRC)
- Low cost, low power multi-ch readout ASIC
 - Start from LABRADOR chip developed for ANITA by Univ. Hawaii
New Photon Detector R&D

- SiPM (Silicon Photo-Multiplier)
 - Improved quantum efficiency by a factor of 2–3.
 - Cost implications
 - Improve Q.E. by 2 → reduce telescope diameter by \(\sqrt{2} \) → reduce telescope cost by 2.5 (\(\propto d^{2.7} \)).
 - SiPM costs ~$20/ch.
- In discussion with a vendor to fabricate 8x8 array
- HEP applications

- PMT Q.E.
 - Bi-alkali
 - Super Bi-Al
 - Ultra Bi-Al
 - Not available
 - $700/PMT
 - $450/PMT

- SiPM Q.E. (from catalog)
 - $700/PMT
 - $450/PMT

Detector R&D in KIPAC,
H. Tajima, SLAC DOE HEP Program Review, June 13, 2007
Conclusions

❖ KIPAC/SLAC is playing leading roles in
 ✦ development of readout electronics
 ✦ Low power, low noise ASIC for Compton camera
 ✦ Low power, low cost ASIC for Cherenkov camera
 ✦ SpaceWire electronics for PoGO
 ✦ development of detector technologies
 ✦ High density silicon detector assembly
 ✦ High Q.E. silicon photo-multiplier array
 ✦ Taking advantage of GLAST/HEP experiences

❖ Cherenkov camera R&D is getting started
 ✦ KIPAC/SLAC can play leading roles in
cdevelopment of future IACTs
 ✦ Beneficial for R&D of HEP Cherenkov detectors