Studies of Upsilon spectroscopy

P. Grenier

SLAC July 7, 2008

SLAC Annual Program Review

Outline


1- Discovery of the bottomonium ground state η_{b}

2- Plans at the $\Upsilon(3S)$ and $\Upsilon(2S)$

Bottomonium Spectrum (until yesterday!)

Inclusive search in the decay: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow \gamma \eta_b$

Branching fraction predictions: $\approx 10^{-4}$

Monochromatic line in E_γ spectrum: $M(\eta_b)=9.4 \text{ GeV} \rightarrow E_{\gamma}=911 \text{ MeV}$

 \rightarrow look for a bump near 900 MeV in inclusive photon energy spectrum

Analysis strategy: one dimensional fit to the E_{γ} distribution

→ Huge background: crucial to reduce the background, and understand the yield and line-shape of the various components

SI A July 7, 2008

SLAC Annual Program Review

Reducing the background: cut optimization

Cut selection: best S/√B

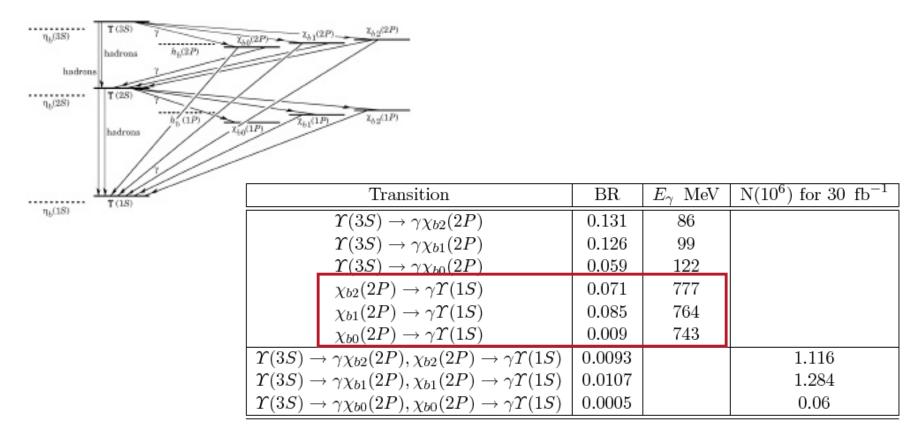
- o Signal yield from Monte Carlo
- o Background from Data: 1/10 of full statistics

Selection using:

- Hadronic cuts (number of tracks)
- Photon cuts
- π^0 veto

	Re
Summary of cuts:	Ha
ε(signal)=37%	LA
	In
ε(bkd)=6%	cc
	π^0
	-

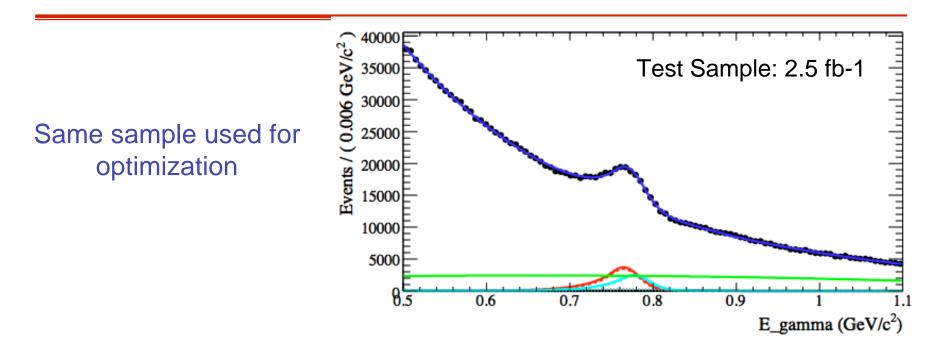
Cut	Efficiency (%)
Reconstruction	70.5
Hadronic selection	97.2
LAT < 0.55	98.0
In barrel	89.9
$ \cos heta_T < 0.7$	68.9
π^0 - 50 MeV cut	89.8
Total	37.0


SLAC July 7, 2008

SLAC Annual Program Review

Checking the cut optimization

Use of exclusive decay: $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(2P), \chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$


 $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$ Peaks close to signal

SLAC July 7, 2008

SLAC Annual Program Review

Checking the cut optimization

Cut	Eff. (from χ_b peak)	Eff. (signal MC)
No cut	-	0.629
BGFMultiHadron	0.973	0.977
≥ 4 ChargedTracks	0.903	0.995
LAT<0.55	0.997	0.991
$-0.762 < \cos(\theta_{\gamma,LAB}) < 0.890$	0.928	0.901
$ \cos(\theta_T) < 0.7$	0.672	0.690
π^{0} -50 MeV cut	0.849	0.899

Compare Eff. between η_b signal MC and χ_b Data: very reasonable agreement

SLAC July 7, 2008

SLAC Annual Program Review

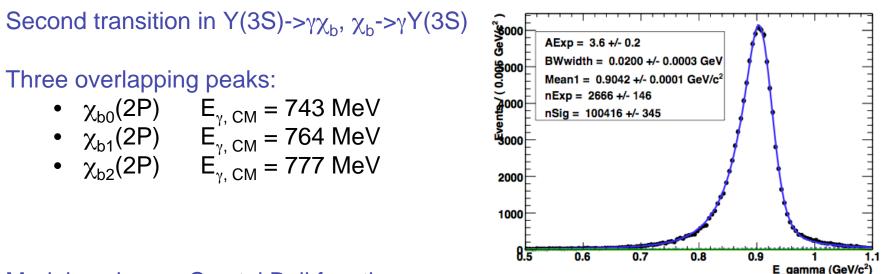
- 1- Non-peaking (continuous):
 - $q\overline{q}(uds)$ and generic ISR events
 - Y(3S) cascade decays
 - Υ (1S) decays, in particular γ gg decays

Fitted together in same PDF, or separated contributions ?

 \rightarrow worked on both options, but chose to fit a single component:

$$A\left(C+e^{-\alpha E_{\gamma}-\beta E_{\gamma}^{2}}\right)$$

- 2- Peaking, next to signal (around 900 MeV):
 - Υ(3S)→γχ_{bJ}(2P), χ_{bJ}(2P) →γΥ(1S): 770 MeV
 - e+e- →γ_{ISR} Υ(1S) : 855 MeV


Extremely important to understand (yield and line-shape)

SLAC July 7, 2008

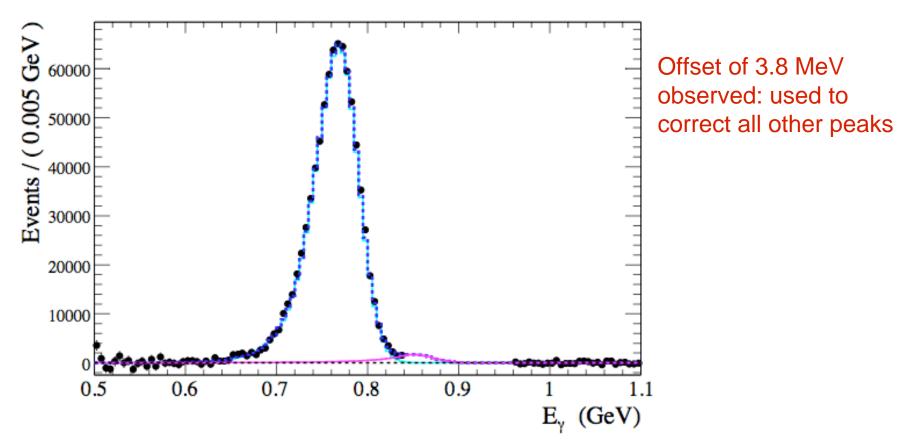
SLAC Annual Program Review

Background to the E_{γ} spectrum: Peaking χ_b

Model each as a Crystal Ball function

- Transition point and power law tail parameter fixed to same value for each peak
- Peak positions fixed to PDG values minus a common offset
- Ratio of yields taken from PDG

Offset of 3.8 MeV observed in data used to correct energy scale of other peaks.


SLAC July 7, 2008

SLAC Annual Program Review

Background to the E_{γ} spectrum: Peaking χ_b

Fit to the full data, with the ISR Y(1S) and signal regions excluded

SLAC July 7, 2008

SLAC Annual Program Review

Background to the E_{γ} spectrum: Peaking $\gamma_{ISR} \Upsilon(1S)$

Both line-shape and yield are very important to determine: peak at 855 MeV!

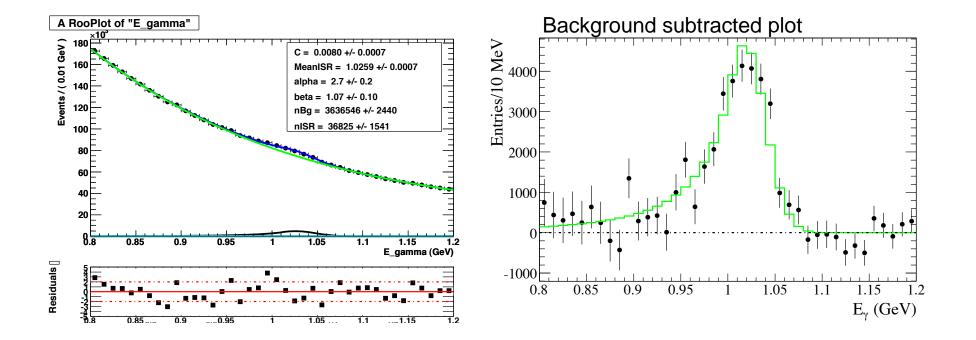
Depending on η_b mass, both peaks are going to overlap.

Several options have been investigated:

- use e+e- $\rightarrow \gamma_{ISR} \Upsilon(1S) \rightarrow \mu \mu$ decay: no sign of ISR peak, too much radiative $\mu \mu$ background....
- Use of Υ (3S) Off-Peak data: scale to On-Peak luminosity (errors)
- Use of Υ (4S) Off-Peak data: more luminosity than Υ (3S) On-Peak
- Use of Υ (4S) On-Peak data: technically nearly impossible to handle
- Use of signal MC and trust efficiency

 \Rightarrow Use of Υ (4S) Off-Peak data, and extrapolate yield to Υ (3S) On-Peak data (using proper cross-sections, efficiencies and integrated luminosities)

(extrapolated yields from Υ (3S) Off-Peak data and extrapolate yield to Υ (4S) Off-Peak data in good agreement)


 SLAC July 7, 2008

SLAC Annual Program Review

Page 11 Page 11

Background to the E_{γ} spectrum: Peaking $\gamma_{ISR} \Upsilon(1S)$

Fit to the Υ (4S) Off-Peak data (use of a Crystal Ball for PDF)

Measured yield: 35759±1576

Extrapolated yield to $\Upsilon(3S)$: 25153±1109±1258

SLAC July 7, 2008

SLAC Annual Program Review

Fit Strategy

Float background parameters

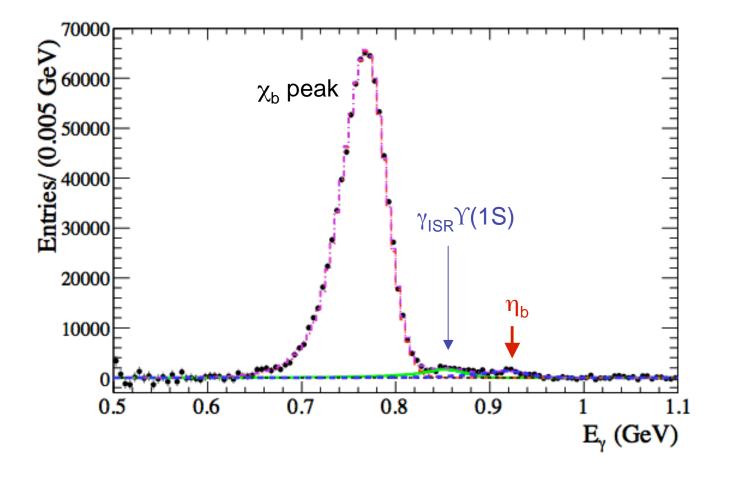
Fix χ_b parameters except yield

Fix ISR γ Y(1S) yield from Y(4S) off-peak

Signal PDF: Crystal Ball ⊗ BW Fix signal Crystal Ball parameters from zero-width MC


We are not sensitive to the width of the η_b and so we fit the data with each of the following widths to study systematic errors: 5, 10, 15, 20 MeV

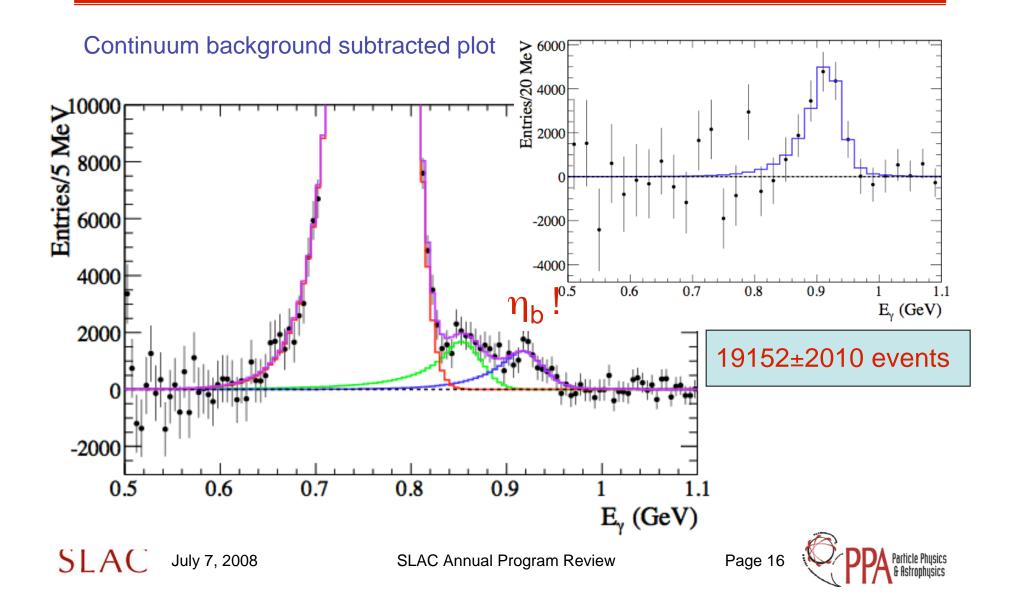
Fit to Full Data set


SLAC July 7, 2008

SLAC Annual Program Review

Fit to Full Data set

Continuum background subtracted plot



SLAC July 7, 2008

SLAC Annual Program Review

Fit to Full Data set

Letter submitted yesterday (during Hassan's talk!) to PRL

In conclusion, we have observed the decay $\Upsilon(3S) \rightarrow$ $\gamma \eta_b$ with a significance of 10 standard deviations. This is the first evidence for the η_b bottomonium state, the pseudoscalar partner of the $\Upsilon(1S)$. The mass of the η_b is $9388.9^{+3.1}_{-2.3} \pm 2.7 \text{ MeV}/c^2$, which corresponds to a mass splitting between the $\Upsilon(1S)$ and the η_b of $71.4^{+2.3}_{-3.1} \pm 2.7$ MeV/c^2 . The estimated branching fraction of the decay $\Upsilon(3S) \rightarrow \gamma \eta_b$ is found to be $(4.8 \pm 0.5 \pm 1.2) \times 10^{-4}$.

SLAC July 7, 2008

SLAC Annual Program Review

Bottomonium studies at the $\Upsilon(3S)$ and $\Upsilon(2S)$

Further studies of the η_b :

 Υ (3S)→γ χ_b (2P)→γηη_b (on-going analysis) Υ (3S)→γη_b(2S) Υ (2S)→γη_b

Search for the missing h_b:

Ƴ(3S)→π⁰ h_b or π⁺π⁻ h_b

Study of Y(nS) \rightarrow Y(mS) transitions (η , π , etc...)

SLAC July 7, 2008

Conclusion

We discovered the η_{b} but we still have a lot of data to analyse, and hopefully make new findings

