E-163 and Laser Acceleration

Eric R. Colby AARD & *E163 Spokesman*

Work supported by Department of Energy contracts DE-AC03-76SF00515 (SLAC) and DE-FG03-97ER41043-III (LEAP).

SLAC July 8, 2008

SLAC Annual Program Review

Page 1 Page 1

E-163 At-a-Glance

Who we are

SLAC→PPA→ARD→AARD→E163

Pls: Robert H. Siemann (50%), SLAC & Robert L. Byer, Stanford University

Staff Physicists

Eric R. Colby (100%), Spokesman Robert J. Noble (30%) James E. Spencer (ret.) <u>Graduate Students</u> Chris McGuinness Chris Sears [grad June 08] Umut Eser Postdoctoral RA Joel England (100%) Rasmus Ischebeck (50%) [now at PSI]

E163 Collaborators Tomas Plettner (Stanford University) Jamie Rosenzweig (UCLA) Sami Tantawi (ATR) Cho Ng (ACD)

Engineering Physicist Dieter Walz (ASD, 10%)

What we do

Develop laser-driven dielectric accelerators into a useful accelerator technology by:

- * Developing and testing candidate dielectric laser accelerator structures
- * Developing facilities and diagnostic techniques necessary to address the unique technical challenges of laser acceleration

Publications

- 20 since May 2007:
- * 6 Refereed papers (all in Physical Review)
- * 14+ Conference papers (6 at PAC2007, 4+ at AAC2008, 4 at others)

Graduate Theses since May 2007

* Chris Sears, Ph.D., Stanford, "PRODUCTION, CHARACTERIZATION, AND ACCELERATION OF OPTICAL MICROBUNCHES", June 2008.

SLAC July 8, 2008

Refereed Publications since May 2007

- **Production and characterization of attosecond electron bunch trains,** C.M.S. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, J. Spencer, R.H. Siemann, D. Walz, R.L. Byer, T. Plettner, *Phys. Rev. ST Accel. Beams* 11, 061301 (2008)
- Three-dimensional dielectric photonic crystal structures for laser-driven acceleration, Benjamin M. Cowan, *Physical Review Special Topics Accelerators and Beams* **11**, 011301 (2008).
- **Proposed dielectric microstructure laser-driven undulator**, T. Plettner, R.L. Byer, *Physical. Review.* Special Topics Accelerators and Beams 11, 030704 (2008)
- Generation and measurement of relativistic electron bunches characterized by a linearly ramped current profile, R.J. England, J.B. Rosenzweig, and G. Travish *PRL* 100, 214802 (May 28, 2008).
- Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron-Beam Distributions, P. Musumeci, J. T. Moody, R. J. England, J. B. Rosenzweig, and T. Tran, *Phys. Rev. Lett.* 100, 244801 (2008)
- Essay: Accelerators, Beams and Physical Review Special Topics Accelerators and Beams, R. H. Siemann, Founding Editor, Physical Review Special Topics Accelerators and Beams 11, 050003 (2008)

Community Service Since May 2007

Eric Colby

Enecology	
	2007 Particle Accelerator Conference Program Committee Member
	LBNL 2007 Director's Review of Accelerator & Fusion Research Department
	FNAL A-Zero Photoinjector Program Committee, 2001 present
	LCLS Gun Test Facility Task Force Co-leader, 2006 – present
	DOE SBIR Proposal Reviewer, 2001 – present
	DOE HENP Grant Renewal Reviewer, 2001 – present
	PRST-AB, IEEE Trans. Plasma Science, PRE, and Physics of Plasmas paper referee
	Panofsky Fellowship Selection Committee Member, 2006 – present
	Member, Accelerator Research Associate Committee, PPA Division
	Member, DOE Office of Independent Oversight Action Item C-2 Response Committee
	Radiation Safety Committee Member 2008 – present
Joel England	
	Member of the Advanced Instrumentation Seminar Committee
Rasmus Ischebeck (frmr.)	
	2006 Advanced Accelerator Concepts Workshop Organizing Committee Member and Working Group Leader
	LCLS Design Reviewer, 2006
Robert Noble	
	Chair, Accelerator Research Associate Committee, PPA Division Referee for <i>Physics of Plasma</i> Journal
Stenhanie Santo	(frmr)
	Assistant to the Editor, Physical Review Special Topics - Accelerators and Beams, 2003 – 2007
	AARD Safety Committee Member, 2004 –2008
Robert Siemann	
	Founding Editor, Physical Review Special Topics - Accelerators and Beams, 1998 – 2007
	Chair, Accelerator Systems Advisory Committee of the Spallation Neutron Source, 1998 – 2006
	DOE Tevatron Operations Review, March 2006
James Spencer (ret.)	
	DOE SBIR Proposal Reviewer, 2006
	Physical Review and Physical Review Letters paper referee
	Member, ARD Research Associate Committee
	Judge, Santa Cruz County and Santa Clara Science Fairs
	Member, Accelerator Research Associate Committee, PPA Division
	Member, ETF Committee that assessed SLAC's commitment to education and
	outreach with the idea of proposing a broader, more unified program
	Member, SULI selection committee

SLAC July 8, 2008

E-163: Relevance to the DOE Mission

Motivation

- High gradient (>0.5 GeV/m) and high wall-plug power efficiency are possible
- ➔ HIGH ENERGY PHYSICS

 Short wavelength acceleration naturally leads to attosecond bunches and point-like radiation sources
BASIC ENERGY SCIENCES

* Lasers are a large-market technology with rapid R&D by industry (DPSS lasers: ↑0.22 B\$/yr vs. ↓0.060B\$/yr for microwave power tubes)

- Structure Fabrication is by inexpensive mass-scale industrial manufacturing methods
- → COMMERCIAL DEVICES

July 8, 2008

SI AC

Structure Candidates for High-Gradient Accelerators Maximum gradients based on measured material damage threshold data 00000 Photonic Crystal "Woodpile" Silicon, λ =1550nm, E,=240 MV/m **Transmission Grating Structure Photonic Crystal Fiber** Silica, λ =800nm, Silica, $\lambda = 1053$ nm, E_=830 MV/m E,=790 MV/m ILC Nom Fiber 1000 E cms GeV 1000 Luminosity from a laser-driven linear collider 2.0E+10 1.0E+04 Bunch charge е must come from high bunch repetition rate # # bunches/train 193 2820 and smaller spot sizes, which naturally follow 5.0E-06 200 train repetition rate MHz from the small emittances required 1.00 1.00 final bunch length psec design wavelength 1.55 1.55 micron Invariant Emittances 10/0.04 1e-4/1e-4 micron Beam pulse format is (for example) I.P. Spot Size - X 554/3.5 0.5/0.5 nm (193 microbunches of 1x10⁴ e⁻ in 1 psec) x 200MHz Geometric Luminosity /cm²/s 2.32E+34 2.39E+34 \rightarrow Storage-ring like beam format \rightarrow reduced event pileup Beam Power MW 45.2 62.0 30 Gradient MeV/m 790 → High beam rep rate=> high bandwidth position stabilization is possible 33333 1266 Active Linac Length m

SLAC Annual Program Review

E-163: Laser Acceleration at the NLCTA

E-163 Scientific Goal: Investigate physical and technical issues of laser acceleration using dielectric structures

Build a test facility with high-quality electron and laser beams for advanced accelerator R&D

- •Endorsed by EPAC and approved by the SLAC director in July 2002
- •Test facility construction completed December 2006
- •Accelerator Readiness Review completed December 18th, 2006
- •Director's and DOE Site Office approval to begin operations granted March 1st, 2007
- •E163 Beamline commissioning begun March 8th, 2007

First beam to high resolution spectrometer of E163 beamline on March 16th, 2007!

Energy

SLAC July 8, 2008

SLAC Annual Program Review

Timing stability and very narrow energy spread have been demonstrated

E163 Capabilities

- * Electron Beam
 - − 60 MeV, 5 pC, $\delta p/p \le 10^{-4}$, e~1.5x1.5 µ, σ_t ~0.5 psec
 - Beamline & laser pulse optimized for very low energy spread, short pulse operation
- * Laser Beams
 - 10 GW-class Ti:Sapphire system
 - KDP/BBO Tripler for photocathode

(800nm, 2 mJ) (266nm, 0.1 mJ)

- Active and passive stabilization techniques
- 5 GW-class Ti:Sapphire system (800nm, 1 mJ)
 - 100 MW-class OPA (1000-3000 nm, 80-20 μJ)
- Precision Diagnostics
 - Picosecond-class direct timing diagnostics
 - Femto-second class indirect timing diagnostics
 - Picocoulomb-class beam diagnostics
 - BPMS, Profile screens, Cerenkov Radiator, Spectrometer
 - A range of laser diagnostics, including autocorrelators, crosscorrelators, profilometers, etc.

You'll visit the E-163 Facility on your tour this afternoon

SLAC July 8, 2008

Attosecond Bunching Experiment Schematic

Attosecond Bunch Train Generation

Inferred Electron Beam Satellite Pulse

Staged Laser Acceleration Experiment

Staging Experiment

3 feet

SLAC July 8, 2008

Demonstration of Staged Laser Acceleration

C. M. Sears, "Production, Characterization, and Acceleration of Optical Microbunches", Ph. D. Thesis, Stanford University, June (2008).

The first demonstration of staged particle acceleration with visible light!

Effective averaged gradient: 6 MeV/m (poor, due to the ITR process used for acceleration stage)

SLAC July 8, 2008

SLAC Annual Program Review

In Progress Now: **First Tests on an Extended Micro-accelerator Structure** (Excitation of Resonant Wakefield in a commercial PBG fiber)

FIBER HOLDER e-beam 9.6 µm 4 candidate commercial fibers CCD 0 0 4 -1.76681 2 3 -3 -2 -1 beam passes through ~1mm of fiber Left: SEM scan of HC-1060 fiber core Tantalum Knife Edge Ce:YAG 10 mm Right: Accelerating Mode fields for $\lambda = 1.09 \mu$ fibers exit chamber for spectrographic analysis Test Structure length: 1200λ (1 mm) INSERTABLE PMO TRIPLET First Challenge: Preparing a small spot MATCHING QUADS 500 T/m PMQ Triplet E-BEAM 1.0 y(mm) 0.8 EXPERIMENTAL BOX 0.6 beam envelopes: $\sigma x (\mu m) \sigma y (\mu m)$ 0.4 1200 SPECTROMETER MAGNET ~150 µm RMS 1000 0.2 800 $\sigma(\mu \mathbf{m})$ 600 0.2 0.4 0.6 0.8 1.0 1.2 1.4 400 x(mm) 200 0.5 1 15 2 25 s(m) July 8, 2008 **SLAC Annual Program Review** Page 15

2D Photonic Band Gap Structure Designs

Goals:

- Design fibers to confine 1. v_{phase} = c defect modes within their bandgaps
- Understand how to 2. optimize accelerating mode properties: Z_{C} ,

V_{group}, E_{acc}/E_{max},...

Codes:

5.00

5.10

5.20

- RSOFT commercial 1. photonic fiber code using Fourier transforms
- CUDOS Fourier-2. Bessel expansion from Univ of Sydney

Accelerating Modes in Photonic Band Gap Fibers

- Accelerating modes identified as special type of defect mode called "surface modes" : dispersion relation crosses the v_{phase} = c line and high field intensity at defect edge.
- Tunable by changing details of defect boundary.
- Mode sensitivities with defect radius R, material index n, and lattice spacing a: $d\lambda/dR = -0.1$, $(d\lambda/\lambda)/(dn/n) = 2$, $d\lambda/da = 1$.

Example: For 1% acceleration phase stability over 1000 λ , the relative variation in fiber parameters must be held to: $\Delta R/R \sim 10^{-4}$, $\Delta n/n \sim 5 \times 10^{-6}$, $\Delta a/a \sim 10^{-5}$

Planar Photonic Accelerator Structures

Synchronous (β=1) Accelerating Field

beam path is into the page

- Accelerating mode in planar photonic bandgap structure has been located and optimized
- Developed method of optical focusing for particle guiding over ~1m; examined longerrange beam dynamics
- * Simulated several coupling techniques
- * Numerical Tolerance Studies: Nonresonant nature of structure relaxes tolerances of critical dimensions (CDs) to $\sim \lambda/100$ or larger

S. Y. Lin *et. al.*, Nature **394**, 251 (1998)

This "woodpile" structure is made by stacking gratings etched in silicon wafers, then etching away the substrate.

SLAC Annual Program Review

Fabrication of Woodpile Structures in Silicon

Stanford's Center for Integrated Systems (CIS)

Date RMR

SLAC July 8, 2008

Laser Acceleration R&D Roadmap

- 1. Demonstrate the physics of laser acceleration in dielectric structures
 - 2. Develop experimental techniques for handling and diagnosing picoCoulomb beams on picosecond timescales
 - 3. Develop simple lithographic structures and test with beam

E163

- Phase I. Characterize laser/electron energy exchange in vacuum
 - Phase II. Demonstrate optical bunching and acceleration
- Phase III. Test multicell lithographically produced structures

Now and Future

- 1. Demonstrate carrier-phase lock of ultrafast lasers
- 2. Continue development of highly efficient DPSS-pumped broadband modeand carrier-locked lasers
- 3. Devise power-efficient lithographic structures with compact power couplers
- 4. Develop appropriate electron sources and beam transport methods

In 3-4 years: Build a 1 GeV demonstration module from the most promising technology

Damage Threshold Improvement