The SuperB Project

U. Wienands Accelerator Systems Division

SLAC DOE HEP Review July 7 – 9, 2008

Achievements of PEP-II

- * Specified at 3x10³³/cm²/s luminosity, PEP-II reached 1.2x10³⁴/cm²/s and delivered about 550/fb of integrated luminosity.
- * PEP-II's daily delivery reached 911/pb/day, about 7x the originally anticipated 135/pb/day.
- During its 9 years of physics running PEP-II produced a wealth of results
 - 350 papers total at the average rate of 70 papers/year (last 3 y).
- * Proved (together with KEKB) to the world that highintensity e⁺e⁻ colliders with multi-ampere of beam current can be run, breaking new ground in rf and feedback technology as well as vacuum technology.

SLAC DOE HEP Review July 7 - 9, 2008

Accel. Physics & Engineering Impact of B-Factories

- Proof that solenoids are an effective suppressant of e-cloud instability.
- Proof that rf systems dominated by beam loading can be operated relying on cutting-edge feedback loops.
- Demonstration of cutting-edge bunch-by-bunch feedback
 in all three planes
- * New understanding of the interaction of high-current shortbunches with vacuum system & mitigation methods
 - Impedances, HOM heating, HOM-absorber modules
- * Benchmark for advanced 3-d beam-beam codes (Ohmi, Cai)
- First e⁺e⁻ IRs successfully operated with multi-ampere beam currents in both beams.

SLAC DOE HEP Review July 7 - 9, 2008

The Physics Case for a High-Luminosity B-Factory

- * CP asymmetries, and searches for rare branching fractions of quarks and leptons.
- * Rare decays not accessible at LHC
- * Test of LFV in τ decays
- * With polarized electron beams:
 - study CP violation in the lepton sector
 - lepton flavor violating processes
 - attempt at measuring E.D.M. of the τ .
- Physics program will be complementary to LHCb and sensitive to new physics unobserved at LHC, at higher mass scales.
- * L \approx 10³⁶/cm²/s necessary to address physics program

SLAC

SLAC DOE HEP Review July 7 - 9, 2008

High-Luminosity B-Factory Proposals

* SuperKEKB

- Essentially a phased upgrade of KEKB
 - Higher beam currents up to 9 A (LER)
 - Lower \mathcal{B}_{γ}^{*} (3 mm)
 - based on crab cavities giving large luminosity enhancement
 - $L_{max} \approx 2...4 \times 10^{35} / \text{cm}^2 / \text{s}$
 - in proposal stage, funding uncertain due to J-PARC competition for \$\$
- * Super*B* by INFN with strong input from SLAC & CalTech
 - New facility at University of Rome "Tor Vergata"
 - Crab waist interaction point with crossing angle, very low \mathcal{B}_{v}^{*}
 - ILC-DR type rings with small emittances
 - Beam currents comparable to PEP-II
 - Polarized electrons designed in from the start.
 - $L_{max} = 10^{36}/\text{cm}^2/\text{s}$, upgrade potential to $4x10^{36}/\text{cm}^2/\text{s}$

The Crab Waist Principle

SuperB Parameters

	Nominal		Սքց	grade	Ultimate		
PARAMETER	LER (e+)	HER (e-)	LER (e+)	HER (e-)	LER (e+)	HER (e-)	
Energy (GeV)	4	7	4	7	4	7	
Luminosity x 10 ³⁶	1.0		2	2.0		4.0	
Circumforon on (m)	4000	1000					
Circumerence (m)		1000					
Revolution frequency (MHZ)	0.1						
Eff. long. polarization (%)	U	U 80					
KF frequency (MHZ)	4	10					
Momentum spread (x10~)	7.9	5.6	9.0	8.0			
Momentum compaction (x10 ⁻⁴)	3.2	3.8	3.2	3.8			
Rf Voltage (MV)	5	8.3	8	11.8	17.5	27	
Energy loss/turn (MeV)	1.16	1.94	1.78	2.81			
Number of bunches	1251				25	02	
Particles per bunch (x10 ¹⁰⁾	5.52				6.	78	
Beam current (A)	1	1.85			3.69		
Beta y* (mm)	0.22	0.39	0.16	0.27			
Beta x* (mm)	35	20					
Emit y (pm-rad)	7	4	3.5	2			
Emit x (nm-rad)	2.8	1.6	1.4	0.8			
Sigma y* (microns)	0.039	0.039	0.0233	0.0233			
Sigma x* (microns)	9.9	5.66	7	4			
Bunch length (mm)		5	4.3				
Full Crossing angle (mrad)	48						
Wigglers (#) 20 meters each	0	0	2	2			
Damping time (trans/long)(ms)	40/20	40/20	28/14	28/14			
Luminosity lifetime (min)	6	.7	3	.35	© M Bia	aini IN	
Touschek lifetime (min)	20	40	38	20		giin, Li	
Effective beam lifetime (min)	5.0	5.7	3.1	2.9			
Injection rate pps (x10 ¹¹) (100%)	2.6 2.3		5.1	4.6	10	9.1	
Tune shift y (from formula)	0.	15	0.20				
Tune shift x (from formula)	0.0043 0.0025		0.0059 0.0034				
RF Power (MW)	1	7		25		58.2	

SuperB Layout

© M. Biagini, LNF

SuperB Site Layout (preliminary) @ Tor Vergata

Polarized e⁻ in SuperB

* SuperB will be have polarization capability designed in

SuperBRf Power

© A. Novokhatski, SLAC

HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER+
		S.	.R. ener	gy		Total	Zero I		Max				Total	Total	Total	Power for	LER
Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	Numbe	S.R.	HOM	cavity	reflected	forward	one	Total
	energy	curren	per turi	um com	tum	oltag	length	pacing	er cavi	of	power	power	loss	power	power	cavity	forward
	GeV	Α	MeV	paction	spread	MV	mm	nsec	MV	cavities	MW	MW	MW	MW	MW	MW	MW
1E+36	7	1.85	1.95	3.8E-04	5.8E-04	8	5.1	4.2	0.65	12	3.6075	0.3303	0.702	0.4349	5.07	0.42	8.10
2E+36	7	1.85	2.81	3.8E-04	8.0E-04	12	5.7	4.2	0.65	18	5.1985	0.3201	1.053	0.5014	7.07	0.39	11.67
4E+36	7	3.7	2.81	3.8E-04	1.0E-03	22	5.2	2.1	0.6	36	10.397	0.9772	1.769	1.7783	14.92	0.41	25.03
																	HER+
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
		S.	.R. ener	зy		Total	Zero I		Max				Total	Total	Total	Power for	Supply
Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	Numbe	S.R.	HOM	cavity	reflected	forward	one	Power
	energy	curren	per turi	um com	tum	voltag	length	pacing	er cavi	of	power	power	loss	power	power	cavity	eff.~50%
	GeV	Α	MeV	paction	spread	MV	mm	nsec	MV	cavities	MW	MW	MW	MW	MW	MW	MW
1E+36	4	1.85	1.13	3.2E-04	8.0E-04	6	5.6	4.2	0.65	10	2.0905	0.2744	0.474	0.1846	3.02	0.30	16.20
2E+36	4	1.85	1.78	3.2E-04	9.0E-04	8	5.5	4.2	0.65	12	3.293	0.2971	0.702	0.3027	4.59	0.38	23.33
																-	

SuperB luminosity profile

SLAC

SLAC DOE HEP Review July 7 - 9, 2008

SuperB vs SuperKEKB

			Super <i>B</i>	SuperKEKB
	Notes:	Circumference (m)	1800	3016
	SuperB length w/o spin rotators. SuperKEKB luminosity assumes x2 gain from	Energy (GeV) (LER/HER)	4/7	3.5/ <mark>8</mark>
		Current (A)/beam	1.85	9.4/4.1
		No. bunches	1251	5018
		No. part/bunches	5.5x10 ¹⁰	12/5x10 ¹⁰
	crab cavities.	θ (rad)	2x24	2x15
		ε _x (nm-rad) (LER/HER)	2.8/1.6	24
1	SuperB luminosity arises	ε _y (pm-rad) (LER/HER)	7/4	180
		β _y * (mm) (LER/HER)	0.22/0.39	3
	trom small emittance &	β _x * (mm) (LER/HER)	35/ <mark>20</mark>	200
	SuperKEKR	σ _y * (μm) (LER/HER)	0.039	1
	Cupencereb	σ _x * (μm) (LER/HER)	10/ <mark>6</mark>	50
		σ _z (mm)	5	3
		L (cm ⁻² s ⁻¹)	1.x10 ³⁶	4.x10 ³⁵
S	LAC	SLAC DOE HEP Review	Page 14	© PPA

SLAC DOE HEP Review July 7 - 9, 2008

Super B Most Important Questions

- * Will the Crab Waist work?
 - Crab waist running @ DAFNE,
 - ongoing MD program & SuperB simulation work
- * Will the low emittances be achievable?
 - Requirements in line with ILC DR => Synergy SuperB <=> ILC DR
 - ATF experience is valuable
- * Will the low *B** be achievable with reasonable acceptance?
 - Acceptance simulations indicate yes, ongoing work needed
- * Will the short beam lifetimes be tolerable?
 - "Trickle Charge" was established operationally at PEP-II
 - SLC-type sources sufficient for SuperB beam lifetimes & currents
 - First look at Touschek losses: should be able to handle the loss rate

Crab Waist Results from DAFNE

DAFNE Luminosity

© P. Raimondi, LNF

SLAC

SLAC DOE HEP Review July 7 - 9, 2008

Beam-Beam Emittance Growth

- * $L = 10^{36} / cm^2 / s$
- * No blow up is seen for HER, 1-3% for LER

July 7 - 9, 2008

SLAC

Super B Reviews & Verdicts

- * Two IRC reviews (International Review Committee, Dainton) (mostly physics, some accelerator)
 - "So far there has been no 'showstopper'; rather there have emerged a number of innovative and noteworthy developments at the cutting-edge of contemporary technique in accelerator physics and detector technology...".
 - "We recommend strongly that work towards the realisation of a SuperB continues".
- * P5 Report (Baltay)(Physics)
 - "The physics reach of a super flavor factory is well motivated and grounded in the very rich suite of measurements produced by the current generation of B factories."
 - "The maturity of the field of B physics supports a strategy of significant US investment in a single next-generation overseas facility."
- * "MiniMAC" Review scheduled for July 17, 18 (accelerator)

SLAC DOE HEP Review July 7 - 9, 2008

SuperB at SLAC

- * SLAC ASD and BP had major impact on design.
 - CDR design mostly based on SLAC/PEP-II (+ ILC-DR) experience.
 - Compatible with PEP-II components & systems, esp. magnets & rf.
 - SLAC BP provided initial acceptance estimate.
 - SLAC provided initial Touschek lifetime estimate.
 - SLAC is leading the polarized-beam effort.
 - SLAC provided power estimates, cost & schedule estimates for CDR.
 - SLAC ASD & BP wrote good fraction of accelerator part of CDR
 - Rf, IR, Magnets, Vacuum, beam dynamics, cost & schedule,...
- * SLAC is playing a leading role in planning for the TDR
- Last not least, PEP-II components can fulfill a significant fraction of SuperB needs

– rf: almost 100%, Magnets: ≈ 70%

Conclusion

- With the recent developments and the support by INFN, P5
 & the IRC, SuperB has gained significant momentum.
- * Excitement about the physics case is building up.
- * SLAC would be an essential player & natural lead laboratory for US involvement in this project
 - The SuperB rings will be a cutting-edge challenge for accelerator physics and engineering.
 - There is significant synergy between the SuperB rings and linearcollider damping rings.
 - The project provides a timely bridge between now and a linear collider for both experimentalists and accelerator physicists/engineers.
- * Best opportunity to leverage investment in PEP-II.

SLAC DOE HEP Review July 7 - 9, 2008

End of Presentation

SLAC DOE HEP Review July 7 - 9, 2008

