## LSST Camera Status

Kirk Gilmore SLAC/KIPAC/LSST

SLAC July 7, 2008

SLAC Annual Program Review





## LSST CAMERA AT SLAC

- \* SLAC Manages the Development of the Camera For LSST
  - The major areas of engineering work at SLAC include:
    - Mechanical / Thermal engineering
      - "Everything" except Sensors & Raft-Towers & Optics
    - Integration, Assembly and Test (SLAC Bldg 33)
      - Includes contamination control, focal plane metrology & in-situ calibrations
    - Camera Utilities (thermal, vacuum, gas)
    - Sensors & Electronics → Camera Interfaces
    - Telescope  $\rightarrow$  Camera Interfaces
- \* Close collaboration on sensor development, filter development and CMOS guiders in corner rafts (Gilmore,Kahn,Simms)
- \* SLAC manages camera/telescope calibration effort (Burke)
- \* Collaborates with UC Santa Cruz on Camera DAQ /Control System (Huffer and Marshall)







## LSST CAMERA R&D AT SLAC

#### \* MECHANICAL & SYSTEM ENGINEERING

- SLAC is the lead institution developing /coordinating a consistent design for the camera and its interfaces to the rest of the project – effectively leading the "systems engineering" effort
  - Developing all the camera interfaces (telescope/electronics etc.)
- Design work and finite element analysis conducted on elements of the:
  - Camera Body
  - L1/L2 Assembly
  - Shutter
  - Filter Changer Mechanisms
  - Cryostat & L3 Mount
  - Utilities (Vacuum and Cryogenics)
- Thermal Analysis for Cryostat & Camera (starting up as design has matured)
- SLAC also coordinates the Integration and Test planning

**SLAC** July 7, 2008

SLAC Annual Program Review



## LSST CAMERA R&D AT SLAC

#### \* MECHANICAL & SYSTEM ENGINEERING

- SLAC is the lead institution developing /coordinating a consistent design for the camera and its interfaces to the rest of the project – effectively leading the "systems engineering" effort
  - Developing all the camera interfaces (telescope/electronics etc.)
- Design work and finite element analysis conducted on elements of the:
  - Camera Body
  - L1/L2 Assembly
  - Shutter
  - Filter Changer Mechanisms
  - Cryostat & L3 Mount
  - Utilities (Vacuum and Cryogenics)
- Thermal Analysis for Cryostat & Camera (starting up as design has matured)
- SLAC also coordinates the Integration and Test planning

**SLAC** July 7, 2008

SLAC Annual Program Review



## LSST CAMERA R&D AT SLAC

#### \* The Cryostat Subsystem in the near term:

- The cryostat milestones for R&D this year are to try to retire some of the major risks we are concerned with:
  - Contamination in cryostat
  - Raft-GRID Kinematic interface
  - Focal plane metrology through L3

#### \* Outstanding issues:

- Contamination Test Chamber
  - Chamber is in final stages of re-assembly on campus. (add cryo elements)
  - Move into "production mode" ASAP for testing materials deemed critical
  - Assembly of a database of materials in the cryostat to estimate outgassing levels and vac. pumping requirements
- Raft-GRID Kinematic Interface
  - Demonstrate sub-micron stability and reproducibility through choice of V-block and ball materials, their
    preparation and their mounting.
- Focal plane metrology
  - Demonstrate that the large area of the focal plane can be stitched together through a real vacuum wall (L3) at the <1 micron level. We have already shown this to be possible with no window.</li>

SLAC July 7, 2008





### Thermal control engineering model being developed

- Design approach
  - Create isolated zones for controlling the camera environments
  - Control zones independently to produce the environments needed
  - Allow for on-telescope cool-down/warm-up
- Thermal zones: 5 thermal zones in the camera
  - 1. Focal plane array
    - Cooled by Cryo plate
  - 2. Cryo Plate
    - Cools Cryo plate, shroud, FEE modules
  - 3. Back end
    - Cools Cold plate, BEE modules
    - No temperature stability requirements
  - 4. Camera body
    - Actively controlled to match ambient temp
  - 5. Utility trunk
    - Actively controlled to match ambient temp



# Filter exchange mechanism in prototyping

Filter exchange time = 120s

Filter exchange consists of 3 assemblies

- Carousel
  - Stores up to five filters out of the field of view
  - Moves chosen filter into exchange position
- Auto Changer
  - Supports filter in the field of view
  - Moves filter from storage position into field of view
- Manual Changer
  - Used for filter exchange from outside the





| Requirement                                        | Value  | Unit   |
|----------------------------------------------------|--------|--------|
| Number of filters housed in the Camera at one time | 5      |        |
| Max time between two visits in different filters   | 2      | min    |
| Minimum operational life of filter changer         | 40,000 | cycles |
| Minimum operational life of filter carousel        | 20,000 | rev    |
| Minimum time between preventative maintenance      | 4,000  | cycles |

**SLAC** July 7, 2008

SLAC Annual Program Review



## Filter prototype RFP going out to vendors

- \* Discussions initiated with multiple vendors
  - JDS Uniphase
  - Infinite Optics
  - SAGEM
  - Barr
  - Goodrich
  - Asahi Spectra
- \* Substantial industrial base exists to coat large, thin filters
- Industry estimates of cost and schedule to coat these large, thin optics have been used as input for LSST camera optics schedule and budget
  - These estimates include a risk reduction study during the R&D phase



#### 300cm coating chamber



**NOVA Laser Fusion Optics** 



**SLAC** July 7, 2008

SLAC Annual Program Review

## Shutter design being prototyped in 08





## A complete camera structural FEA model has been assembled





- Structural FEA results to date
  - Mass optimization
  - Improving structural efficiency:
  - Interfacing to the telescope:  $F_2 = 21.73Hz$
  - Sensitivity analyses
  - Distortion analysis
  - Stress analysis

**SLAC** 

July 7, 2008

SLAC Annual Program Review



## L3 lens distortion and stress analysis indicates working design

- \* CTRIAX6 2-D 6-noded Axisymmetric triangular elements used
  - FEA Mass = 43.25 kg; CAD Mass = 43.29 kg
- \* Vacuum loading on lens (at sea level)
  - Generally accepted maximum safe working stress for fused silica is 7.0 MPa, which corresponds to a safety factor of 7.5
  - Lens design carries an adequate margin of safety
- \* Fracture analysis
  - Critical flaw size = 0.73 mm (SF = 2)



**SLAC** July 7, 2008

SLAC Annual Progra

### Sensor development plan

- Technology study
  - understand and model device characteristics
  - engage qualified vendors
  - address the most pressing technical challenges early
  - establish test lab at BNL

#### Prototype

- multivendor competition
- fabricate sensor meeting all LSST specifications
- demonstrate yield and quality control
- ramp up test capability within LSST collaborating institutions
- Production
  - manufacture, test, and deliver 200+ science-grade sensors
  - 24-month production period
  - single- or dual-source



## Raft tower electronics partitioning



## **Electronics Prototyping**





## ASPIC - Analog Signal processer

- 8-channel CCD readout ASIC developed in France (LAL/LPNHE)
  - Dual-Slope Integration and Clamp & Sample implemented for comparison
- Channel cross talk < 0.01% (hardest requirement fulfilled)</li>
- Linearity better than 0.5% from 1 400 mV input (require 1%)



## From sensors to rafts to raft/towers -All being prototyped in 08-09



## Corner raft tower -Prototype in 09 at Purdue





### **CMOS** Guide Sensor





## 08-09 French activities that support camera R&D

#### • CCD test stand (LPNHE, Paris):

- Setup started in January 2008. First version scheduled to be operational before the end of spring.
- Test Stand will be used in to contribute to the LSST CCD prototyping characterization.
- Short-term goal, before September 2008, will be to begin a detailed study of the ASPIC chip readout with an LSST CCD.
- Calibration test stand (LPSC, Grenoble):
  - The goal of this test stand will be to characterize the LSST camera after integration at SLAC.
  - Studies on the optical requirements for this test stand started in March 2008.

**SLAC** July 7, 2008





## A camera integration plan is complete Cryostat Utility Trunk Camera Body L1/L2 assy Page 21 SI 2008 SLAC Annual Program R

### DIFFERENTIAL NON-CONTACT METROLOGY SYSTEM IN AIR



#### **IN-SITU METROLOGY - DIFFRACTION** PATTERN GENERATOR Laser-diffraction grating projection head **Sequentially Project** & Reconstruct **Precisely Known** Laser projection heads mounted on instrumentation CCD Focal plane L3 lens Patterns of Ellipses ring internal to cryostat at Shallow Angles **Onto FPA Fit Centroids Thru** Inside Fiber optic vacuum **Full CCD System** To spot projection heads **8 OVERLAPPING** cryostat feed throughs **PATTERNS COVER** and Reconstruct A Outside FOCAL PLANE **Patterns To Find** High order mode filters cryostat Telescope camera optical window (L3) Fiber optic 1 to 8 optical switch Laser collimating lens (multiplexer) Diffractive optical element 5 micron core High speed single mode fiber optic cable fiber optic on/off switch Instrumentation ring To fiber coupled laser diode source (laser shutter) CCD sensor array Wavelength Mounting structure (Grid) stabilized fiber coupled laser article Phusics age JUIY 1, 2000 OLAO Annuar rogram Acview JLAU **Astronhusics**

## Summary of sub-system risk mitigation activities

|               | #  | Activity                                                  | Description of Activity/Risk Mitigation                                                                                                                                                            | Risk Needing Mitigation                                                                                                                                       |
|---------------|----|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanical    | 1A | Kinematic coupling prototype                              | Prototype kinematic coupling design concept;<br>evaluate material/coating options; test over full temp<br>range                                                                                    | Kinematic coupling is not suitably stable and repeatable to keep CCD's in flatness spec                                                                       |
|               | 1B | Grid thermal-mech analysis                                | Develop Grid/Cryo Plate thermal and structural model (steady-state)                                                                                                                                | Grid thermal-mech motion could move CCD's beyond their allowable position envelope                                                                            |
|               |    |                                                           |                                                                                                                                                                                                    |                                                                                                                                                               |
|               | #  | Activity                                                  | Description of Activity/Risk Mitigation                                                                                                                                                            | Risk Needing Mitigation                                                                                                                                       |
| Contamination | 1A | Contamination Study Chamber<br>Construction               | Complete Construction and Commissioning of<br>Contamination Study Chamber and Move to<br>Campus Lab                                                                                                | Materials in Cryostat will outgas and degrade the performance of the CCD's. All potential materials in cryostat will need to be examined.                     |
|               | 1B | Contamination Testing                                     | Purchase material samples and commercial coatings. Student labor (10hrs/weekx26wks)                                                                                                                | Demonstrate that the most serious potential<br>contaminents can be controlled without changing<br>design of the cryostat                                      |
|               |    |                                                           |                                                                                                                                                                                                    |                                                                                                                                                               |
|               | #  | Activity                                                  | Description of Activity/Risk Mitigation                                                                                                                                                            | Risk Needing Mitigation                                                                                                                                       |
| Metrology     | 1  | Raft Kinematic Coupling<br>Prototype (testing)            | Fit-up of metrology facility for testing;                                                                                                                                                          | Budget environmental, surface & materials<br>related effects to K.C. Mechanical properties, or<br>wear-in. Testing required to isolate individual<br>effects. |
|               | 2  | Raft Kinematic Coupling Testing follow-up & Specification | Evaluate results of testing and repeat tests (using<br>other materials and surface finishes indicative of<br>superior performance) as necessary. Contingent on<br>testing results described above. | Nominal kinematic coupling<br>materials/finish/coating choices may not provide<br>required stability and reproducibility.                                     |





## Summary of sub-system risk mitigation activities

| $\mathbf{O}$ | nti | ics |
|--------------|-----|-----|
| $\mathbf{U}$ | μυ  | 00  |

| #  | Activity                      | Description of Activity/Risk Mitigation                                               | Risk Needing Mitigation                     |
|----|-------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| 1A | Optical Coating Evaluation    | Evaluate results of vendor studies on optical                                         | Camera optical coatings won't meet          |
|    |                               | coatings                                                                              | specifications                              |
| 1B | Optical Tolerance Analysis    | Incorporate FEA structural and thermal analysis into camera optics tolerance analysis | Camera optics structural and thermal        |
|    |                               |                                                                                       | environment will prevent camera optics from |
|    |                               |                                                                                       | meeting image quality spec.                 |
| 1C | Wavefront Sensing and Guiding | Validate conceptual analysis through comparison                                       | Wavefront sensing and guiding won't meet    |
|    | Analysis                      | with lab and sky data                                                                 | image quality specifications                |

|     | #  | Activity           | Description of Activity/Risk Mitigation     | Risk Needing Mitigation                                             |
|-----|----|--------------------|---------------------------------------------|---------------------------------------------------------------------|
| CCS | 1  | CCS control system | Prototype an instance of the control system | We need an instance of the controls system to deliver on a test bed |
|     | 1A |                    | graduate student developer @ UI             | a person to actually write code                                     |

| #  | Activity                         | Description of Activity/Risk Mitigation                                                                                                                                                                                                                                        | Risk Needing Mitigation                                                                                                                                                                                                                                                         |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1A | CCD characterization test stands | This category includes new Dewar extensions,<br>vacuum equipment, optics, and measurement<br>systems for characterization of CCDs from study<br>contract and prototype contract vendors. The goal<br>for this year is to complete the construction and<br>commissioning of two | Development of overdepleted, multi-output back-<br>illuminated CCDs is the number one technical<br>and schedule risk to the LSST camera. Maturity<br>of prototype sensors needs to be determined by<br>testing at BNL. A facility for conducting tests in a<br>reproducible man |
| 1B | Electronics test interfaces      | PCBs, components, connectors, and cables for interfacing new electronics to CCD sensors.                                                                                                                                                                                       | New front-end electronics modules produced by U. Penn, Harvard, and other LSST groups need vaildation with CCD inputs at -100C temperature.                                                                                                                                     |
| 1C | Raft prototypes                  | This category includes design and fabrication of silicon carbide raft prototype(s), fixturing, and measurement equipment for studying dimensional stability of rafts and sensor-raft assemblies. We plan the first demonstration of focal plane mosaic flatnes                 | Assembly procedure to ensure 6.5micron<br>coplanarity of sensors on rafts requires<br>experimental study. Failure to achieve required<br>flatness would severely compromise image<br>quality of the camera.                                                                     |

Electronic

CCD

|           | Priority | Activity                                                                                                           | Requesting institution     | Notes:                                                                                  |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------|
|           | All 1    | Camera Electronics Project<br>Management                                                                           | Harvard                    | Technical and budgetary project management                                              |
| ectronics |          | Design, Fabricate, and test Raft<br>Control Crate with Version 2.0<br>BEE board, backplane, Raft<br>Control Module | Harvard                    | Goal is full 144 channel readout electronics for one full raft of LSST science sensors. |
| SLAC      | July 7   | , 2008                                                                                                             | SLAC Annual Program Review | Page 25 PPA Particle Physic                                                             |

