Detector R&D at KIPAC

Hiro Tajima
Kavli Institute for Particle Astrophysics and Cosmology
Detector R&D Overview

GLAST GeV Gamma-ray Observatory

- Si detector
- ASIC Integration

Next generation X-ray Observatory
- Compton camera (NeXT SGD)
- Scintillator polarimeter

Relativistic outflow
- Particle acceleration
- Dark matter

Multi-wavelength Observation

Next generation TeV gamma-ray Observatory
- Cherenkov camera (AGIS)

Other SLAC Activities

ASIC DAQ

photon detector
Compton Camera Concept

Concept
- Reconstruct incident photon direction, energy
 - Compton kinematics

Applications
- NeXT/SGD (Soft Gamma-ray Detector)
 - Next generation Japanese satellite
 - Soft gamma-ray spectrometer
 - 10 – 600 keV
 - Polarimeter
 - 3% 5σ sensitivity for 0.1 Crab @100ks
 - Complementary with GLAST
- Radiation detection technology
 - Localizing nuclear material

\[
\cos \theta = 1 + \frac{m_e c^2}{E_1 + E_2} - \frac{m_e c^2}{E_2}
\]
Science Driver for NeXT

* NeXT Science connection with DOE Science.
 - Precise measurement of dark matter density in 100s of galaxy clusters (complementary with LSST/SNAP).
 - Exquisite energy resolution (~6 eV) of X-ray calorimeter.
 - Observation of obscured AGNs (active galaxies).
 - Connection with GLAST AGN science.
 - Sensitive hard X-ray/soft gamma-ray spectral measurement by Hard X-ray Imager and SGD.
Compton Camera Development

* Required technologies
 – Front-end ASIC
 • Low noise for fine energy and angular resolution
 – Event selection with Compton kinematics
 • Low power for space application, portable device
 – High density sensor assembly
 • Fabrication technique from HEP and GLAST
 – High quality high-Z semiconductor detector
 • CdTe/CdZnTe detectors being developed by collaborators.
 – CdTe: ISAS for NeXT/SGD
 – CZT: CalTech for radiation detection technology R&D
Low Noise Low Power ASIC

* VATA-series low noise and low power ASIC
 – Originated from VA1TA for KEK HEP experiment
 – Noise optimized for expected capacitance load
 – SEU (single-event upset) tolerant design
 – On-chip ADC developed for low power, compact
 – On-chip sparse-data scan for faster readout
High Density Compact Assembly

* State-of-art compact assembly technique.
 – Minimize inactive material.
 – GLAST expertise
 – Simulation study to optimize performance.
Compton Camera Funding

* Funding sources
 - SLAC/DOE
 - Fabrication of engineering model (0.05 FTE, ~5 kUSD/year M&S)
 - Department of Homeland Security
 - 650 kUSD/2.5 year (0.6 FTE) since March/2007.
 - ASIC and silicon detector design/fabrication
 - High density assembly development
 - Pending
 - ISAS/JAXA (Japanese Space Agency)
 - Fabrication of mechanical engineering model, flight model of Compton camera for NeXT/SGD.
 - ~3M USD (~2M USD for M&S, ~1M USD for labor).
 - NASA MOO proposal to participate NeXT mission is approved.
 - Expect ~400 kUSD/year to support operation of SGD (2012-).
 - NASA proposal for solar polarization mission with UC Berkeley/SSL
 - Design/Fabrication of ASIC (~200 kUSD)
Scintillator Polarimeter

* PoGO Concept
 - Well-type phoswich detector
 - BGO, slow scintillator to veto BG
 - Narrow FOV, low background
 - Pulse shape discrimination to identify hits in fast scintillators
 - 217 array of phoswich detectors
 - Large effective area
 - Azimuth angle distribution of Compton scattering

* Funding
 - Engineering balloon flight supported by Swedish agency.
 - Applying for NASA funding.
SpaceWire based Electronics/DAQ

* SpaceWire interconnect standard
 – 200 Mbps, simple network protocol
 – Adopted by NASA, ESA, ISAS/JAXA

* Circuit design at KIPAC, fabricated by ISAS
 – Satisfactory performance at KEK synchrotron beam test
Cherenkov Camera

* Cherenkov camera with large # of pixel
 - Important for future TeV gamma-ray IACTs (Imaging Cherenkov Atmospheric Telescopes)
 • Large FOV (field-of-view)
 • Better angular resolution
 • Complementary to GLAST GeV gamma-ray science
 - ~1k ch. ⇒ 10k–100k ch. (x 50–100 telescopes)
 • Cost, power reduction and better reliability
 - Leadership role expected in photon detector/electronics R&D (SLAC has long history in Cherenkov imaging with BaBar/DIRC)

* Funding
 - AGIS R&D proposal to DOE/NSF.
 - KIPAC/Stanford funding (S. Funk).
Compact Camera Design with ASIC

* High integration in ASIC reduce external components.
 – Digitization in front-end.
 – Very small amount of cables from camera.
 – Lower cost.
 – ASIC is highly reliable.
 • Only one malfunctioning ASIC out of 15k at GLAST.
 • Dead channel fraction is 4E-4 and stable.
 • Majority of problem is in connection.

* ASIC specifications.
 – 4 µs trigger latency (4096 sampling @ 1GHz)
 – 9 bit Analog-to-Time converter.
 – Time-to-Digital conversion by FPGA.
 – Expected cost: ~$10/channel (including board/support)
ASIC Performance

* ASIC is designed and being tested @ Univ. of Hawaii.
New Photon Detector R&D

* SiPM (Silicon Photo-Multiplier)
 - Improved quantum efficiency by a factor of 2–3.
 - Cost implications
 • Photon collection power per cost is competitive with 8x8 multi-anode PMT.
 - In discussion with a vendor to fabricate 2x8 arrays.
 - HEP applications

PMT Q.E.

SiPM Q.E. (from catalog)

Not available

$450/PMT

$700/PMT

$450/PMT

$700/PMT
Summary

* KIPAC/SLAC is playing leading roles in
 – Development of readout electronics
 • Low power, low noise and highly integrated ASIC for Compton camera
 • Low power and low cost ASIC for Cherenkov camera
 • SpaceWire electronics for PoGO
 – Development of detector technologies
 • High density silicon detector assembly
 • High Q.E. silicon photo-multiplier array
 – Taking advantage of GLAST/HEP experiences

* Cherenkov camera R&D is critical for future of KIPAC.
 – P5 recommendations on TeV astronomy.
 • Funding on R&D efforts.
 • Funding on the next generation TeV project in favorable budget situation.
 – Continuation of GLAST gamma-ray science into future.