Detector R&D at KIPAC

Hiro Tajima Kavli Institute for Particle Astrophysics and Cosmology

SLAC July 8, 2008

SLAC Annual Program Review

Page

Detector R&D Overview

Compton Camera Concept

- * Concept
 - Reconstruct incident photon direction, energy
 - Compton kinematics
- Applications

$$\cos\theta = 1 + \frac{m_e c^2}{E_1 + E_2} - \frac{m_e c^2}{E_2}$$

- NeXT/SGD (Soft Gamma-ray Detector)
 - Next generation Japanese satellite
 - Soft gamma-ray spectrometer
 - 10-600 keV
 - Polarimeter
 - 3% 5 σ sensitivity for 0.1 Crab @100ks
 - Complementary with GLAST
- Radiation detection technology
 - Localizing nuclear material

Science Driver for NeXT

- * NeXT Science connection with DOE Science.
 - Precise measurement of dark matter density in 100s of galaxy clusters (complementary with LSST/SNAP).
 - Exquisite energy resolution (~6 eV) of X-ray calorimeter.

- Observation of obscured AGNs (active galaxies).
 - Connection with GLAST AGN science.
 - Sensitive hard X-ray/soft gamma-ray spectral measurement by Hard X-ray Imager and SGD.

Compton Camera Development

- * Required technologies
 - Front-end ASIC
 - Low noise for fine energy and angular resolution
 - Event selection with Compton kinematics
 - Low power for space application, portable device
 - High density sensor assembly
 - Fabrication technique from HEP and GLAST
 - High quality high-Z semiconductor detector
 - CdTe/CdZnTe detectors being developed by collaborators.
 - CdTe: ISAS for NeXT/SGD
 - CZT: CalTech for radiation detection technology R&D

Low Noise Low Power ASIC

- * VATA-series low noise and low power ASIC
 - Originated from VA1TA for KEK HEP experiment
 - Noise optimized for expected capacitance load
 - SEU (single-event upset) tolerant design
 - On-chip ADC developed for low power, compact
 - On-chip sparse-data scan for faster readout

Julv 8, 2008

High Density Compact Assembly

SLAC Annual Program Review

- * State-of-art compact assembly technique.
 - Minimize inactive material.
 - GLAST expertise
 - Simulation study to optimize performance.

July 8, 2008

Page

Compton Camera Funding

- Funding sources
 - SLAC/DOE
 - Fabrication of engineering model (0.05 FTE, ~5 kUSD/year M&S)
 - Department of Homeland Security
 - 650 kUSD/2.5 year (0.6 FTE) since March/2007.
 - ASIC and silicon detector design/fabrication
 - High density assembly development
 - Pending
 - ISAS/JAXA (Japanese Space Agency)
 - Fabrication of mechanical engineering model, flight model of Compton camera for NeXT/SGD.
 - ~3M USD (~2M USD for M&S, ~1M USD for labor).
 - NASA MOO proposal to participate NeXT mission is approved.
 - Expect ~400 kUSD/year to support operation of SGD (2012-).
 - NASA proposal for solar polarization mission with UC Berkeley/SSL
 - Design/Fabrication of ASIC (~200 kUSD)

Scintillator Polarimeter

PoGO Concept

- Well-type phoswich detector
 - BGO, slow scintillator to veto BG
 - Narrow FOV, low background
 - Pulse shape discrimination to identify hits in fast scintillators
- 217 array of phoswich detectors
 - Large effective area
 - Azimuth angle distribution of Compton scatting
- Funding
 - Engineering balloon flight supported by Swedish agency.
 - KIPAC/Stanford Enterprise fund for M&S (T. Kamae).
 - Applying for NASA funding.

SpaceWire based Electronics/DAQ

- SpaceWire interconnect standard
 - 200 Mbps, simple network protocol
 - Adopted by NASA, ESA, ISAS/JAXA
- Circuit design at KIPAC, fabricated by ISAS
 - Satisfactory performance at KEK synchrotron beam test

Cherenkov Camera

- * Cherenkov camera with large # of pixel
 - Important for future TeV gamma-ray IACTs (Imaging Cherenkov Atmospheric Telescopes)
 - Large FOV (field-of-view)
 - Better angular resolution
 - Complementary to GLAST GeV gamma-ray science
 - ~1k ch. ⇒ 10k–100k ch. (x 50–100 telescopes)
 - Cost, power reduction and better reliability
 - Leadership role expected in photon detector/electronics R&D (SLAC has long history in Cherenkov imaging with BaBar/DIRC)

* Funding

- AGIS R&D proposal to DOE/NSF.
- KIPAC/Stanford funding (S. Funk).

Compact Camera Design with ASIC

- High integration in ASIC reduce external components.
 - Digitization in front-end.
 - Very small amount of cables from camera.
 - Lower cost.
 - ASIC is highly reliable.
 - Only one malfunctioning ASIC out of 15k at GLAST.
 - Dead channel fraction is 4E-4 and stable.
 - Majority of problem is in connection.
- * ASIC specifications.
 - 4 µs trigger latency (4096 sampling @ 1GHz)
 - 9 bit Analog-to-Time converter.
 - Time-to-Digital conversion by FPGA.
 - Expected cost: ~\$10/channel (including board/support)

ASIC Performance

New Photon Detector R&D

- * SiPM (Silicon Photo-Multiplier)
 - Improved quantum efficiency by a factor of 2–3.
 - Cost implications
 - Photon collection power per cost is competitive with 8x8 multianode PMT.
 - In discussion with a vendor to fabricate 2x8 arrays.
 - HEP applications

Summary

- * KIPAC/SLAC is playing leading roles in
 - Development of readout electronics
 - Low power, low noise and highly integrated ASIC for Compton camera
 - Low power and low cost ASIC for Cherenkov camera
 - SpaceWire electronics for PoGO
 - Development of detector technologies
 - High density silicon detector assembly
 - High Q.E. silicon photo-multiplier array
 - Taking advantage of GLAST/HEP experiences
- * Cherenkov camera R&D is critical for future of KIPAC.
 - P5 recommendations on TeV astronomy.
 - Funding on R&D efforts.
 - Funding on the next generation TeV project in favorable budget situation.
 - Continuation of GLAST gamma-ray science into future.

July 8, 2008

SLAC Annual Program Review

