Computational Adaptive Mesh Refinement

Matthew Turk Graduate Research Assistant, KIPAC

SLAC July 8, 2008

SLAC Annual Program Review

Page

Overview

- * Astrophysics is a highly multi-scale problem!
- * Sophisticated physics needed on all scales
- * Eulerian methods with large dynamical range in space and time are possible with embedded meshes
- With appropriate on-the-fly criteria, meshes can be embedded adaptively
- * Extreme dynamic range now possible

Multi-Scale Physical Problems

- * Primordial stars have formation efficiency of 0.03%!
- * Galaxies shaped by stars, star clusters, merger history
- Must be able to adequately resolve large scale structure and small scale in order to develop next-generation subgrid models!

Dynamic Range

	Size	Relative Size
Visible Universe	$1.3 \times 10^{23} \text{ km}$	1.00
Galaxy Cluster	$3 \times 10^{19} \text{ km}$	2×10^{-4}
Galaxy	$6 \times 10^{17} \text{ km}$	5 x 10 ⁻⁶
Star Cluster	$2 \times 10^{15} \text{ km}$	2 x 10 ⁻⁸
Star	700,000 km	5 x 10 ⁻¹⁸
Earth	6,000 km	5 x 10 ⁻²⁰
Us	0.002 km	1.5 x 10^{-26}

SLAC Annual Program Review

Physics Necessary

- Radiative cooling
- Ionization physics
- * Background radiation
- * Multi-species fluids
- Extensible to new subgrid models

Adaptive Mesh Refinement

- Higher-order hydrodynamic schemes
- Interpolate to higher resolution
- Correct fluxes of conserved quantities across boundaries

Adaptive Mesh Refinement

Codes Available

- * Diversity of codes:
 - Enzo (SLAC, UCSD, Colorado, Columbia)
 - Orion (LBL, LLNL, Princeton, UCSC)
 - ART (UChicago, Fermilab)
 - Chombo (LBL)
- * Enzo code:
 - Wide use in cosmology
 - Freely distributed, community developed
 - Patch-based AMR
 - Piecewise Parabolic Mesh hydro reconstruction
 - 12-species chemistry network

Simulational Domain

it - Cocoa #1

- Primordial star formation
- Galaxy formation
- Large-scale structure
- Present-day star formation

Computational Domain Expanding

- Modern simulations run on hundreds if not thousands of processors
- Computational infrastructure at SLAC supports large-* scale simulations
- * Studying formation of large scale structure with all attendant physics (galaxy feedback, cosmic rays, chemistry, star formation) is nearer than ever
- * Galaxy catalogs, simulated observations, lensing studies

