Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy

ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders SLAC, July 8, 2009

Future colliders: ultra-high fields in the accelerator

High fields in violent accelerating systems

 $eE_z/mc\omega \sim 1$

- High field implies short λ
 - Relativistic oscillations...
 - Limit peak power
 - Stored energy

Challenges

- Ultra-small beams
- Structure breakdown
- Pulsed heating
- What sources < 1 cm?</p>

Input Laser Beam

Scaling the accelerator in size

Lasers produce copious power (~J, >TW)

- Scale in size by 4 orders of magnitude
- $\lambda < 1 \mu m$ gives *challenges* in beam dynamics
- Reinvent resonant structure using *dielectric* (E163, UCLA)

To jump to GV/m, only *need* mm-THz
Must have new source...

Promising paradigm for high field accelerators: wakefields

- Coherent radiation from bunched, v~c, e⁻ beam
 Any impedance environment
 Powers more exotic schemes: plasma, dielectrics
 Non-resonant, short pulse operation possible
 Intense beams needed by other fields

 X-ray FEL
 X-rays from Compton scattering
 - THz sources

High gradients, high frequency, EM power from wakefields: CLIC @ CERN

The dielectric wakefield accelerator

- Higher accelerating gradients: GV/m level
 - Dielectric based, low loss, short pulse
 - Higher gradient than optical? Different breakdown mechanism
 - No charged particles in beam path...
- Use wakefield collider schemes
 - CLIC style modular system
 - Afterburner possibility for existing accelerators
- Spin-offs
 - High power THz radiation source

Dielectric Wakefield Accelerator Overview

Design Parameters a.b

 σ_{z}

E

Electron bunch (β ≈ 1) drives Cerenkov
 wake in cylindrical dielectric structure
 Variations on structure features
 Multimode excitation
 Wakefields accelerate trailing bunch

Mode wavelengths

$$\lambda_n \approx \frac{4(b-a)}{n} \sqrt{\varepsilon - 1}$$

Extremely good beam needed

Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

Ez on-axis, OOPIC

Experimental History Argonne / BNL experiments

Proof-of-principle experiments

- (W. Gai, et al.)
- ANL AATF

Mode superposition

(J. Power, et al. and S. Shchelkunov, et al.)

• ANL AWA, BNL

Transformer ratio improvement

- (J. Power, et al.)
- Beam shaping
- Tunable permittivity structures
 - For external feeding (A. Kanareykin, *et al.*)

$\begin{array}{c} 120 \\ 80 \\ 40 \\ -40 \\ -80 \\ -120 \\ 0 \\ 200 \\ 40 \\ 0 \\ -40 \\ -80 \\ 0 \\ -80 \\$

 ΔE vs. witness delay

Gradients limited to <50 MV/m by available beam

T-481: Test-beam exploration of breakdown threshold

Go beyond pioneering work at ANL

- Much shorter pulses, small radial size
- Higher gradients...

Leverage off E167Goal: breakdown studies

- Al-clad fused SiO₂ fibers
 ID 100/200 μm, OD 325 μm, L=1 cm
- Avalanche v. tunneling ionization
- Beam parameters indicate E_z ≤11GV/m can be excited
 - 3 nC, σ_z ≥ 20 μm, 28.5 GeV

• 48 hr FFTB run

T-481 "octopus" chamber

T481: Methods and Results

PRL 100, 214801 (2008)

PHYSICAL REVIEW LETTERS

week ending 30 MAY 2008

Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,^{1,2,*} H. Badakov,¹ A. M. Cook,¹ J. B. Rosenzweig,¹ R. Tikhoplav,¹ G. Travish,¹ I. Blumenfeld,³ M. J. Hogan,³ R. Ischebeck,³ N. Kirby,³ R. Siemann,³ D. Walz,³ P. Muggli,⁴ A. Scott,⁵ and R. B. Yoder⁶

¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA ²Lawrence Livermore National Laboratory, Livermore, California 94551, USA ³Stanford Linear Accelerator Center, Menlo Park, California 94025, USA ⁴University of Southern California, Los Angeles, California 90089, USA ⁵University of California, Santa Barbara, California 93106, USA ⁶Manhattan College, Riverdale, New York 10471, USA (Received 20 January 2008; published 27 May 2008)

First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30–330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 μ m inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13.8 ± 0.7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques.

T481: Beam Observations

View end of dielectric tube; frames sorted by increasing peak current

T-481: Inspection of Structure Damage

Damage consistent with beam-induced discharge

Screen

Laser transmission test

CCD Camera Hollow Fiber Waveguides Hollow Fiber Waveguides

OOPIC Simulation Studies

Parametric scans for design

- Heuristic model benchmarking
- Show pulse duration in multimode excitation... hint at mechanism
- Determine field levels in experiment: breakdown
 - Gives breakdown limit of 5.5 GV/m deceleration field

Example scan, comparison to heuristic model

Multi-mode excitation - short, separated pulse

Parameter	Value
Dielectric inner diameter $(2a)$	100 µm
Dielectric outer diameter $(2b)$	324 µm
Dielectric relative permittivity (ε)	~3
Number of e^- per bunch (N_b)	$1.4 imes10^{10}$
RMS bunch length (σ_z)	$100 - 10 \ \mu m$
RMS bunch radius (σ_r)	10 µm
Beam energy	28.5 GeV
Maximum radial field at dielectric surface	27 GV/m
Maximum decelerating field (vacuum)	11 GV/m
Maximum accelerating field (vacuum)	16 GV/m

E169 Collaboration

UCLA

H. Badakov^{α}, M. Berry^{β}, I. Blumenfeld^{β}, A. Cook^{α}, F.-J. Decker^{β}, M. Hogan^{β}, R. Ischebeck^{β}, R. Iverson^{β}, A. Kanareykin^{ϵ}, N. Kirby^{β}, P. Muggli^{γ}, J.B. Rosenzweig^{α}, R. Siemann^{β}, M.C. Thompson^{δ}, R. Tikhoplav^{α}, G. Travish^{α}, R. Yoder^{ζ}, D. Walz^{β} ^{*a*}Department of Physics and Astronomy, University of California, Los Angeles ^βStanford Linear Accelerator Center ^{*y}University of Southern California*</sup> ⁸Lawrence Livermore National Laboratory ⁵Manhattanville College ^{*ɛ*}Euclid TechLabs, LLC **Collaboration spokespersons**

E-169 Motivation

Take advantage of unique experimental opportunity at SLAC
FACET: ultra-short intense beams
Advanced accelerators for high energy frontier
Very promising path: dielectric wakefields
Extend successful T-481 investigations
Multi-GV/m dielectric wakes
Complete studies of transformational technique

E169 at FACET: overview

- Research GV/m acceleration scheme in DWAGoals
 - Explore breakdown issues in detail
 - Determine usable field envelope
 - Coherent Cerenkov radiation measurements.
 - Explore alternate materials
 - Explore alternate designs and cladding
 - Radial and longitudinal periodicity...
 - Varying tube dimensions
 - Impedance change
 - Breakdown dependence on wake pulse length

Approved experiment (EPAC, Jan. 2007)
Awaits FACET construction

Already explored at UCLA Neptune

Observation of THz Coherent Cerenkov Wakefields @ Neptune

Chicane-compressed (200 μm) 0.3 nC beam

- Focused with PMQ array to σ_r~100 μm (a=250 μm)
- Single mode operation
 - Two tubes, different b, THz frequencies
- Horn-launched quasi-optical transport
- Autocorrelation in Michelson interferometer

E-169: High-gradient Acceleration

Goals in 3 Phases

 Phase 1: Complete breakdown study (when does E169->E168!)

 \checkmark explore (*a*, *b*, σ_z) parameter space

✓ Alternate cladding

✓ Alternate materials (e.g. CVD diamond)

✓ Explore group velocity effect $T = L_d / (c - v_s) \le \varepsilon L_d / c(\varepsilon - 1)$ Coherent Cerenkov (CCR) measurement

✓ Total energy gives field measure

 \checkmark Harmonics are sensitive σ_z diagnostic

$$U_{c} \approx \frac{eN_{b}E_{z,dec}L_{d}}{2}$$
$$U_{n} \approx \frac{\pi^{2}nN_{b}^{2}r_{e}m_{e}c^{2}\sigma_{z}^{2}L_{d}}{2a(b-a)^{2}\left[\sqrt{8\pi(\varepsilon-1)\varepsilon\sigma_{z}} + (\varepsilon-1)a\right]} \exp\left[-\left(\frac{n\pi\sigma_{z}}{2(b-a)\sqrt{\varepsilon-1}}\right)^{2}\right]$$

σ_{z}	≥ 20 µm
σ_r	< 10 µm
U	25 GeV
0	3 - 5 nC

FACET beam parameters for E169: high gradient case

E-169 at FACET: Phase 2 & 3

- Phase 2: Observe acceleration
 - ✓ 10-33 cm tube length
 - ✓ longer bunch, acceleration of tail
 - ✓ "moderate" gradient, 1-3 GV/m
 - ✓ single mode operation
 - Phase 3: Scale to 1 m length✓ Alignment, transverse wakes, BBU
- ✓ Group velocity & EM exposure

Longitudinal E-field

σ_{z}	50-150 μm
σ_r	< 10 µm
E _b	25 GeV
0	3 - 5 nC

FACET beam parameters for E169: acceleration case

Momentum distribution after 33 cm (OOPIC)

Experimental Issues: Alternate DWA design, cladding, materials

Aluminum cladding in T-481

- ✓ Vaporized at moderate wake amplitudes
- Low vaporization threshold; low pressure and thermal conductivity of environment

Dielectric cladding

- ✓ Lower refractive index provides internal reflection
- ✓ Low power loss, damage resistant
- Bragg fiber?
 - Low HOM
- Alternate dielectric: CVD diamond
 - Ultra-high breakdown threshold
 - Doping gives low SEC
 - First structures from Euclid Tech.

Bragg fiber

CVD deposited diamond

Control of group velocity with periodic structure

 For multiple pulse beam loaded operation in LC, may need *low v*_q

 Accelerating beam
 Use periodic DWA structure in ~π-mode
 Example: simple SiO₂diamond structure

Alternate geometry: slab

Slab geometry suppresses transverse wakes*
Also connects to optical case
Price: reduced wakefield
Interesting tests at FACET
Slab example, >600 MV/m

*A. Tremaine, J. Rosenzweig, P. Schoessow, Phys. Rev. E 56, 7204 (1997)

Energy	σ_x	σ_z	σ_y	2a	2 <i>b</i>	Q	ε
25 GeV	500 um	20 um	10 um	125 um	1100 um	3 nC	5.5

Towards a linear collider...

What have we learned?

- One might use gradients of 2-3 GV/m
 Near to plasma w/o attendant challenges
- Frequencies of interest are ~ few THz (?)
- Need nC level drive bunch, <50 μm rms
- What do we need to learn?
 - Usable gradients, materials, aging
 - Structure design features (e.g. slab, v_q control)
 - Transverse wakes, beam loading
 - Full system considerations

Parameter list: a departure point

		ILC Nominal	DWALC
E_cms	GeV	1000	1000
Bunch Charge	е	2.0E+10	5.0E+08
# bunches/train	#	2820	200
train repetition rate	kHz	5.0E-02	2.4
final bunch length	psec	1.00	0.08
design wavelength	micron	230609.58	300.00
Normalized emittances	micron	10/0.04	2e-02/6e-04
I. P. Spot Size	nm	554/3.5	25/0.5
Enh. Luminosity	/cm^2/s	4.34E+34	1.14E+35
Beam Power	MW	22.6	19.2
Wall-Plug Power	MW	104.0	76.9
Gradient	MeV/m	30	2500
Total Linac Length	km	33.3	0.4

Calculator from E. Colby

Based on multibunch trains Other optimizations possible (slab structures)

Conclusions

Very promising technical approach in DWA
Physics surprisingly forgiving thus far
Looks like an accelerator!
FACET should provide critical test-bed
Linear collider system presents new challenges
Unique problems of short λ, wakefields

Develop straw man now!