Microwave-Based High-Gradient Structures and Linacs

Sami Tantawi SLAC

Acknowledgment

- The work being presented is due to the efforts of
 - V. Dolgashev, L. Laurent, F. Wang, J. Wang, C. Adolphsen, D. Yeremian, J. Lewandowski, C. Nantista, J. Eichner, C. Yoneda, C. Pearson, A. Hayes, D. Martin, R. Ruth, S. Pei, Z. Li SLAC
 - T. Higo and Y. Higashi, et. al., KEK
 - W. Wuensch et. al., CERN
 - R. Temkin, et. al., MIT
 - W. Gai, et. al, ANL
 - J. Norem, ANL
 - G. Nusinovich et. al., University of Maryland
 - S. Gold, NRL
 - Bruno Spataro, INFN Frscati

Overview

- Review of experimental data on high gradient structure
- Efficiency and standing wave accelerator structure designs
- A 1 TeV collider
 - Improved efficiency
 - Possible parameter set

Research and Development Plan

Experimental Studies

- Basic Physics Experimental Studies
 - Single and Multiple Cell Accelerator Structures (with major KEK and CERN contributions)
 - single cell traveling-wave accelerator structures (Needs ASTA)
 - single-cell standing-wave accelerator structures (Performed at Klystron Test Lab)
 - Waveguide structures (Needs ASTA)
 - Pulsed heating experiments (Performed at the Klystron Test Lab, also with major KEK and CERN contributions)
- Full Accelerator Structure Testing (Performed at NLCTA, with CERN contributions) Can only be done at NLCTA at SLAC

Breakdown Probability for a Standing Wave Accelerator Structure with $a/\lambda=0.22$

Accelerating Gradient MV m_

Breakdown Probability for a Standing Wave Accelerator Structure with $a/\lambda=0.14$

Breakdown Probability [1] pulse[m]

Accelerating Gradient MV m

Breakdown Probability for a Standing Wave Accelerator Structure with $a/\lambda=0.1$

Accelerating Gradient WVmL

Breakdown Probability for a Standing Wave Accelerator Structure with different $a/\lambda=0.21$

Accelerating Gradient MVmL

Breakdown Probability for a Standing Wave Accelerator Structure with different a/λ

Peak Temprature Rise

Breakdown Probability for a Standing Wave Accelerator Structure with $a/\lambda=0.22$

Gradient MVm

Breakdown Probability for a Standing Wave Accelerator Structure with $a/\lambda=0.22$, Pulse length=200ns

Gradient MVm

We have not tested yet structure with small apertures and different material "\$tay_Tuned" This is coming very soon

Field Profile over the Iris

Peak H and Peak ExH

Full Accelerator structure testing (the T18 structure)

Frequency.	11.424GHz
Cells	18+input+output
Filling Time	36ns
a_in/a_out	4.06/2.66 mm
vg_in/vg_out	2.61/1.02 (%c)
S11	0.035
S21	0.8
Phase	120Deg
Average Unloaded Gradient over the full structure	55.5MW→100MV/m

$$E_{acc_out}/E_{acc_in} \sim 1.5$$

•Structure designed by CERN based on all empirical laws developed experimentally through our previous work

- •Cells Built at KEK
- •Structure was bonded and processed at SLAC
- •Structure was also tested at SLAC

RF Processing of the T18 Structure

This performance *may be* good enough for 100MV/m structure for a warm collider, however, it does not yet contain all necessary features such as wakefield damping. Future traveling wave structure designs will also have better efficiency

2007-09 CERN/CLIC Design Structures Tested at NLCTA

(Yellow = Quad Cell Geometry, Green = Disk Cell Geometry)

I n Beamline	Structure	Note	Performance	
11/06 – 2/07	C11vg5Q16	First X-band Quad - Irises Slotted	Poor: 57 MV/m, 150 ns, 2e-5 BDR – grew whiskers on cell walls	
2/08 - 4/08	C11vg5Q16 Redux	Refurbished I nitially good (105 MV/m, 50 ns,1e-5 BDR) b one cell degraded		
4/07 - 10/07	C11vg5Q16-Mo	Molybdenum Version of Above Poor: 60 MV/m, 70 ns, 1e-6 BDR		
10/08 - 12/08	TD18vg2.6_Quad	No I ris Slots but WG Damping	Very Poor: would not process above 50 MV/m, 90ns – gas spike after BD	
4/08 - 7/08	T18vg2.6-Disk	Cells by KEK, Assembled at SLAC	Good: 105 MV/m, 230 ns at LC BDR spec of 5e- 7/pulse/m but hot cell developed	
7/08 – 10/08	T18vg2.6-Disk	Powered from Downstream End Good: 163 MV/m, 80 ns, 2e-5 BDR in last cell, consistent with forward operation		
12/08 - 2/09	T18vg2.6-Disk CERN	CERN Built, Operate in Vac Can Vac Can Vac Can Vac Can		

Calculated Parameters for T53VG3 Structure

T18 Surface Field Parameters in Comparison with SW Structures

Parameters

7/10/2009

So, What does all this imply for a 1 TeV collider parameters?

- High gradient requires high power density/unit length, quadratic with gradient. Hence the two beam choice for the CLIC design
- However, since one also accelerates in shorter length the total required RF power increases linearly with gradient.
- High gradient also implies reduced efficiency;

$$\sim \frac{x}{1+x}; x = \frac{R_s I_0}{E_a}$$

η

- However, one can compensate by increasing the efficiency the *accelerator structure* and *RF sources*.
 - Increasing the efficiency of the accelerator structure would reduce the power/unit length, and it might allow for the use of a conventional RF unit
 - At the moment the best (published) design that respects high gradient constraints imply an RF to beam efficiency of about 28%
 - Higher efficiency RF source and accelerator efficiency imply lower RF system cost

Yet another Finite Element Code

Motivated by the desire •to design codes to perform *Large Signal Analysis* for microwave tubes (realistic analysis with short computational time for optimization) •study surface fields for accelerators •the need of a simple interface so that one could "play"

A finite element code written completely in Mathematica was realized.
To my surprise, it is running much faster than SuperFish or Superlance
The code was used with a Genetic Global Optimization routine to optimize the cavity shape under surface field constraints

I ris shaping for a structure with $a/\lambda=0.14$

- Shunt I mpedance104 M Ω /mQuality Factor9778Peak E_s/E_a 2.41Peak Z_0H_s/E_a 1.12
- With 1 nC/bunch and bunch separation of 6 rf cycles the RF to beam efficiency~70%
- The power required/m~287 MW

I ris shaping for a structure with $a/\lambda=0.1$

- With 0.5 nC/bunch, bunch separation of 6 rf cycles, and loaded gradient of 100 MV/m the RF to beam efficiency~53%
- The power required/m~173 MW

Feeding and Wakefield damping of a set of π -mode structures

•Each cell is fed through a directional coupler.

•The feeding port serve as the damping port

•The system has a four-fold symmetry, only one section is shown $_{7/10/2009}$

Parameter Options for a 1 TeV machine, 2 10³⁴ cm⁻² s⁻¹

	Option-1	Option-2	Option-3		
Frequency (GHz)	11.424				
Gradient (MV/m)	100	100	80		
Power/meter (MW)	287	173	126		
Charge/bunch (nC)	1	0.5	0.5		
Bunch separation (RF cycles)		6			
Number of bunches	300	600	600		
<a \="">	0.14	0.1	0.1		
RF source	Two beam	Two Beam/Conventional Unit	Conventional Unit		
RF/Beam Efficiency(%)	73	53	60		
Beam duration Pulse length (ns)	158	315	315		
Repetition Rate (Hz)	60	60	60 ₂₇		

Conclusion

- With recent advances on high gradient accelerator structures, it is possible to think of an "efficient" room temperature collider
- Reduced power levels/unit length may permit designs based on conventional RF unit.