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Overview

• Review of experimental data on high gradient
structure

• Efficiency and standing wave accelerator
structure designs

• A 1 TeV collider
– Improved efficiency
– Possible parameter set
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Experimental Studies

• Basic Physics Experimental Studies
– Single and Multiple Cell Accelerator Structures (with major KEK and CERN contributions)

• single cell traveling-wave accelerator structures (Needs ASTA)
• single-cell standing-wave accelerator structures (Performed at Klystron Test Lab)

– Waveguide structures (Needs ASTA)
– Pulsed heating experiments (Performed at the Klystron Test Lab, also with major KEK and CERN

contributions)
• Full Accelerator Structure Testing (Performed at NLCTA,  with CERN contributions)

Can only be done at NLCTA at SLAC
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Breakdown Probability for a Standing Wave
Accelerator Structure with different

a/ =0.21
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Breakdown Probability for a Standing Wave
Accelerator Structure with different a/
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We have not tested yet structure with small apertures and different material
“Stay Tuned” This is coming very soon7/10/2009 14
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Peak H and Peak ExH
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Research and Development Plan

Cumulated
Phase Change

Frequency. 11.424GHz

Cells 18+input+output

Filling Time 36ns

a_in/a_out 4.06/2.66 mm

vg_in/vg_out 2.61/1.02 (%c)

S11 0.035

S21 0.8

Phase 120Deg
Average Unloaded Gradient
over the full structure

55.5MW 100MV/m

Full Accelerator structure testing ( the T18
structure)

5.1~__ inaccoutacc EE

120°

Field
Amplitude

•Structure designed by CERN based on all empirical
laws developed experimentally through our previous
work
•Cells Built at KEK
•Structure was bonded and processed at SLAC
•Structure was also tested at SLAC
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After 250hrs RF
Condition

After 500hrs RF
Condition

After 900hrs RF
Condition

RF BKD Rate Pulse Width Dependence at Different Conditioning
Time

G=108MV/m

G=108MV/m

G=110MV/m

RF Processing of the T18 Structure

After 1200hrs RF
Condition

This performance may be good enough for 100MV/m structure for a warm collider, however, it does not yet
contain all necessary features such as wakefield damping. Future traveling wave structure designs will also
have better efficiency
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2007-09 CERN/CLIC Design Structures Tested at
NLCTA

In Beamline Structure Note Performance

11/06 – 2/07 C11vg5Q16
First X-band Quad

- Irises Slotted
Poor: 57 MV/m, 150 ns, 2e-5 BDR – grew whiskers

on cell walls

2/08 - 4/08
C11vg5Q16

Redux
Refurbished Initially good (105 MV/m, 50 ns,1e-5 BDR) but

one cell degraded

4/07 – 10/07 C11vg5Q16-Mo Molybdenum Version of
Above Poor: 60 MV/m, 70 ns, 1e-6 BDR

10/08 – 12/08 TD18vg2.6_Quad No Iris Slots but WG
Damping

Very Poor: would not process above 50 MV/m,
90ns – gas spike after BD

4/08 – 7/08 T18vg2.6-Disk Cells by KEK, Assembled
at SLAC

Good: 105 MV/m, 230 ns at LC BDR spec of 5e-
7/pulse/m but hot cell developed

7/08 – 10/08 T18vg2.6-Disk Powered from Downstream
End

Good: 163 MV/m, 80 ns, 2e-5 BDR in last cell,
consistent with forward operation

12/08 – 2/09
T18vg2.6-Disk

CERN
CERN Built, Operate in

Vac Can
Very Poor: very gassy with soft breakdowns at 60

MV/m, 70 ns

(Yellow = Quad Cell Geometry, Green = Disk Cell Geometry)
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SQRT(EmaxHmaxZ0)/Ea
HmaxZ0/Ea

Emax/Ea

SW a/ =0.22

SW a/ =0.14

SW a/ =0.1

SW

T18 Surface Field Parameters in
Comparison with SW Structures
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So, What does all this imply for a 1 TeV collider parameters?

• High gradient requires high power density/unit length, quadratic with gradient.
Hence the two beam choice for the CLIC design

• However, since one also accelerates in shorter length the total required RF power
increases linearly with gradient.

• High gradient also implies reduced efficiency;

• However,   one can compensate by increasing the efficiency the accelerator
structure and RF sources.

– Increasing the efficiency of the accelerator structure would reduce the power/unit length, and
it might allow for the use of a conventional RF unit

– At the moment the best ( published ) design that respects high gradient constraints imply an RF
to beam efficiency of about 28%

– Higher efficiency RF source and accelerator efficiency imply lower RF system cost
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Yet another Finite Element Code
Motivated by the desire
•to design codes to perform Large Signal Analysis for microwave tubes
(realistic analysis with short computational time for optimization)
•study surface fields for accelerators
•the need of a simple interface so that one could “play”

•A finite element code written completely in Mathematica was realized.
•To my surprise, it is running much faster than SuperFish or Superlance
•The code was used with a Genetic Global Optimization routine to
optimize the cavity shape under surface field constraints
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Iris shaping for a structure with a/ =0.14

Shunt Impedance 83 M /m
Quality Factor 8561
Peak Es/Ea 2.33
Peak Z0Hs/Ea 1.23

Shunt Impedance 104 M /m
Quality Factor 9778
Peak Es/Ea 2.41
Peak Z0Hs/Ea 1.12
• With 1 nC/bunch and bunch separation of 6

rf cycles the RF to beam efficiency~70%
• The power required/m~287 MW7/10/2009 24



Iris shaping for a structure with a/ =0.1

Shunt Impedance 102 M /m
Quality Factor 8645
Peak Es/Ea 2.3
Peak Z0Hs/Ea 1.09

Shunt Impedance 128 M /m
Quality Factor 9655
Peak Es/Ea 2.5
Peak Z0Hs/Ea 1.04
• With 0.5 nC/bunch, bunch separation of 6

rf cycles, and loaded gradient of 100
MV/m the RF to beam efficiency~53%

• The power required/m~173 MW7/10/2009 25



Feeding and Wakefield damping of a set
of -mode structures

•Each cell is fed through a directional coupler.
•The feeding port serve as the damping port
•The system has a four-fold symmetry, only one section is shown
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Parameter Options for a 1 TeV machine,
2 1034 cm-2 s-1

Option-1 Option-2 Option-3

Frequency (GHz) 11.424

Gradient (MV/m) 100 100 80

Power/meter (MW) 287 173 126

Charge/bunch (nC) 1 0.5 0.5

Bunch separation ( RF
cycles)

6

Number of bunches 300 600 600

<a/ > 0.14 0.1 0.1

RF source Two beam Two
Beam/Conventional

Unit

Conventional Unit

RF/Beam Efficiency(%) 73 53 60

Beam duration Pulse
length (ns)

158 315 315

Repetition Rate (Hz) 60 60 607/10/2009 27



Conclusion
• With recent advances on high gradient

accelerator structures, it is possible to think of
an “efficient” room temperature collider

• Reduced power levels/unit length may permit
designs based on conventional RF unit.
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