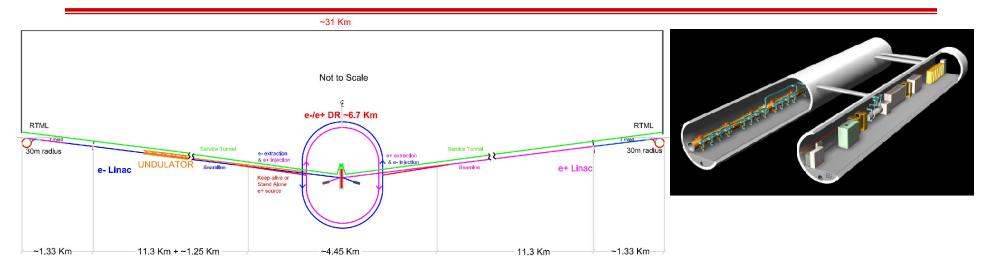
Workshop on Novel Concepts for Linear Accelerators and Colliders

Tor Raubenheimer SLAC

July 8 – 10, 2009

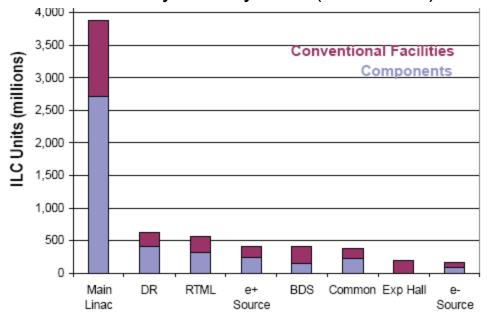
Introduction


- * There has been a strong Advance Accelerator R&D program around the world for the last 30+ years
 - Concepts on new acceleration techniques
 - Rf, laser, and beam driven using dielectric, metallic, and plasmas
 - New particle sources and new methods of beam manipulation and new concepts for beam control and focusing
- * There are specialized workshops to discuss these topics
 - Advanced Accelerator Concepts and High Brightness e- Beams
- * Here I would like us to look at how these concepts might be applied to optimizing a linac
 - Bring the different efforts together and look at the problems from the accelerator design and systems view
- * The primary example that we selected will be linear colliders but think more broadly

Linear Collider Status

- Strong international development program on linear collider over last 30-years
 - Designs based on 'reasonable' extrapolations of existing technology: ILC (1.3 GHz SC) and CLIC (12 GHz NC)
- * Any linear collider is a massive project: varying between ultra-huge (10's B\$) and huge (~5 B\$) in US accounting
 - Access to funding will be influenced by political processes and is inherently uncertain
- * Problem: finding appropriate political support given the cost
- Given uncertainty, the program must think about new concepts and new approaches
 - LC program provides a good example for application of new ideas

International Linear Collider: Cost Drivers



Schematic Layout of the 500 GeV Machine

* ILC costs provide basis for optimization

- 60% of costs are in ML
- 15~20% in the RTML and damping rings
- Power handling ~5%
- GDE effort is working on 'minimal' configuration

ILC Costs by Sub-system (from RDR)

Linear Collider Facility Cost Goals

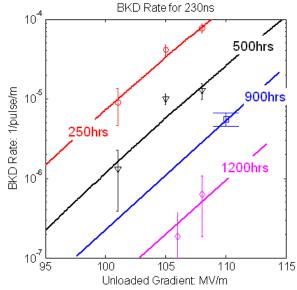
- * Goal: could we reduce LC cost by an order of magnitude
 - Have to benefit from optimization all subsystems
 - New acceleration systems
 - Improved focusing concepts
 - Improved beam generation
- Facility costs scale roughly with power consumption and facility size
 - High gradient can reduce site length are components cheaper?
 - Need improved efficiency, better sources, or improved focusing to reduce power consumption
- * Future projects probably need to optimize life cycle costs
 - Inflated annual energy costs ~1\$ (2020\$) per Watt
 - Energy costs an order of magnitude smaller than capital cost in ILC design → important factor in a future design

July 8, 2009

High Gradient Acceleration

- * Largest cost driver for a linear collider is the acceleration
 - ILC geometric gradient is ~20 MV/m → 50km for 1 TeV
- * Size of facility is costly → higher acceleration gradients
 - High gradient acceleration requires high peak power and structures that can sustain high fields
 - Beams and lasers can be generated with high peak power
 - Dielectrics and plasmas can withstand high fields
- Many paths towards high gradient acceleration
 - RF source driven microwave structures ~100 N
 - Beam-driven microwave structures
 - Laser-driven dielectric structures
 - Beam-driven dielectric structures
 - Laser-driven plasmas
 - Beam-driven plasmas

July 8, 2009



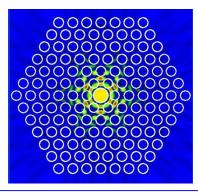
High Gradient RF Acceleration

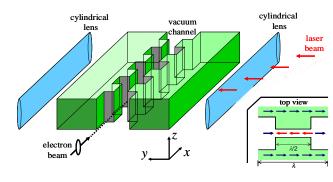
- * Extensive R&D on breakdown limitations in microwave structures
 - US High Gradient Collaboration
 - CERN and Japan

Dependence for 230ns Pulse at Different Conditioning Time

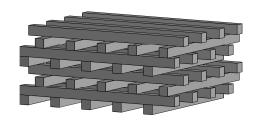
* In the last few years:

July 8, 2009


- X-band gradients have gone from ~50 MV/m loaded to demonstrations of ~150 MV/m loaded with ~100 MV/m expected
- C-band rf unit is operating at 37 MV/m; 8 GeV XFEL begun

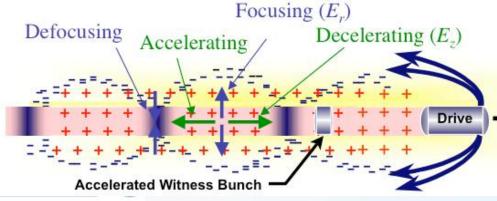


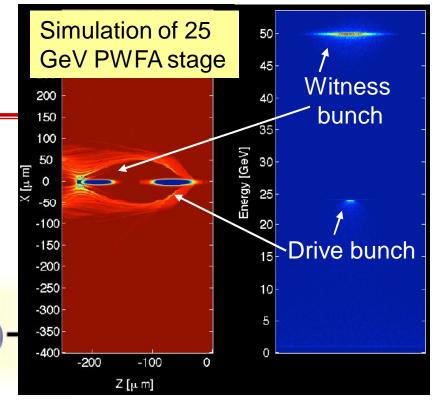
Dielectric Structures

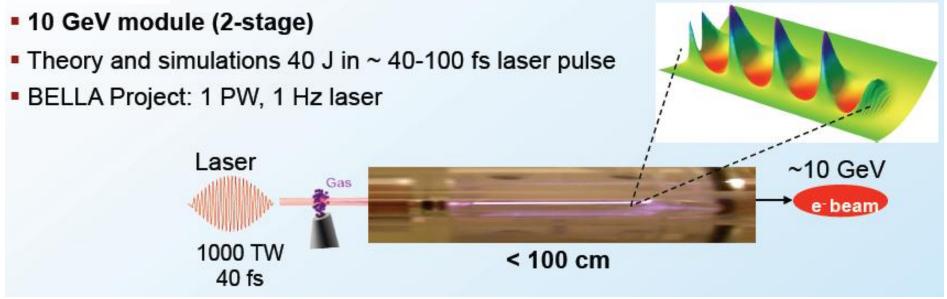

- * Dielectric structures have higher breakdown limits approaching 1 GV/m at THz frequencies
 - Extensive damage measurements to characterize materials

Photonic Crystal "Woodpile" Silicon, λ =1550nm, E_z =240 MV/m

Photonic Crystal Fiber Silica, λ=1053nm, E_.=790 MV/m


Transmission Grating Structure Silica, λ =800nm, E_z =830 MV/m


- Structures can be either laser driven or beam driven
- Will likely require new concepts for injector systems



Plasma Acceleration (Beam-driven or Laser-driven)

- * 50 GV/m in FFTB experiments
 - Potential use for linear colliders and radiation sources

High Gradient Acceleration

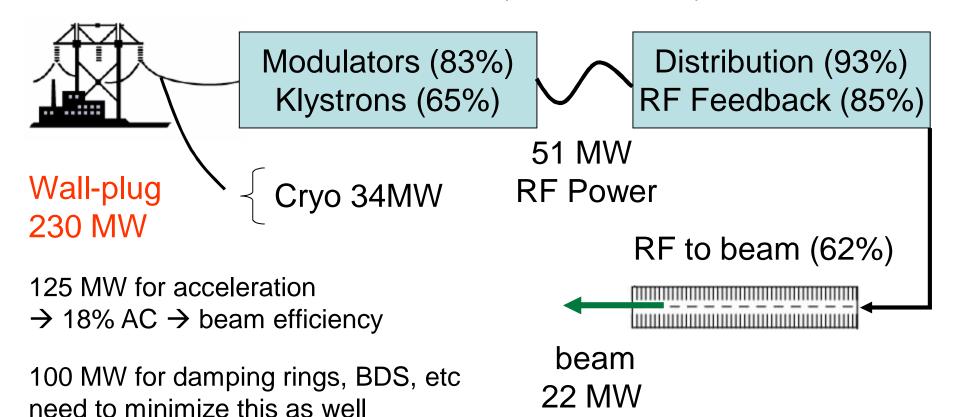
- * Need structures to sustain high acceleration fields
 - Topic of extensive R&D
- Require high peak power for high gradient acceleration
 - Pulsed power generation efficient with low peak power
 - RF pulse compression
 - Drive beam (two beam acceleration)
 - Lasers
- High power lasers and electron beams can store and manipulate large amounts of power
 - Add power slowly and then manipulate pulse/beam to increase peak power
 - Examples: TBA and CPA
- * Need to maintain efficiency throughout process

Linear Collider Parameters

- Luminosity is critical in a linear collider
 - Physics studies have been based on ~1x10³⁴ cm⁻²sec⁻¹

$$L = \frac{f_{rep}}{4\pi} \frac{N^2}{\sigma_x \sigma_y} \qquad \Rightarrow \qquad L = \frac{P_{beam}}{4\pi E_{beam}} \frac{N}{\sigma_x \sigma_y} H_D \sim \frac{P_{beam}}{E_{beam}} \frac{n_\gamma}{\sigma_y} H_D$$

- Need large beam powers, large bunch charges, and small spot sizes
 - For example, conventional parameters at 1 TeV:
 - 20 MW beam power, 10^{10} e+/e- per bunch, frep = 10 kHz, and $\sigma_x/\sigma_v = 140 / 3 \text{ nm} \rightarrow 1x10^{34} \text{ cm}^{-2}\text{sec}^{-1} \text{ within } 1\% \text{ of cms energy}$
- All parameters pushed beyond state-of-the-art
 - Develop/adopt new concepts to allow rebalance of parameters


Examples of 1 TeV Collider Parameters

	"ILC"	CLIC	Dielectric	Plasma
CMS Energy (GeV)	1000	1000	1000	1000
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2.8	2.3	1.2	3.1
Luminosity in 1% of Ecms	1.9	1.1	1.1	1.1
Bunch charge (10 ¹⁰)	2	0.37	3.80E-06	1
Bunches / train	2820	312	193	125
Repetition rate (Hz)	4	50	7.50E+06	60
Beam Power (MW)	36.2	9.2	8.8	20
Emittances $\varepsilon_{n,x}$ / $\varepsilon_{n,y}$ (mm-mrad)	10 / 0.04	0.7 / 0.02	1e-4 / 1e-4	2 / 0.02
IP Spot sizes sx/sy (nm)	554 / 3.5	140 / 2	1.0 / 1.0	140 / 2
IP bunch length sz (μm)	300	30	0.1 -> 300	10
Drive beam / Laser / RF Power (MW)	80	36.8	44	38
Gradient (MV/m)	31.5	100	400	25000
Two linac length (km)	47	14	~4	~6
Drive beam / Laser / RF generation eff.	53.95%	49%	60%	45%
Drive beam / Laser / RF coupling eff.	49.01%	25%	20%	35%
Overall efficiency	17.90%	12.10%	12%	15.70%
Site Power (MW)	~300	~150	~130	~120

SLAC

Power Conversion

- * Accelerators act as transformers: grid AC → beam power
- * Conventional linear collider (500 GeV ILC):

Goals for the Workshop

- Over the last number of years the AARD programs have developed many novel concepts which have broad application to accelerator design
 - Bring AARD community together to consider how to apply these concepts to accelerator systems
- Focus on understanding the implications of the different concepts with a goal of developing self-consistent accelerator parameters and specifying the R&D programs needed for further progress
 - Sketch self-consistent designs for a 1 TeV linear collider based on novel approaches
 - Consider R&D beyond initial development that will be needed to apply the concepts

Working Groups

- 1. Microwave structure-based linacs
 - * Toshi Higo, Sami Tantawi, and Walter Wuensch
- 2. Dielectric structure-based linacs
 - Eric Colby and James Rosenzweig
- 3. Plasma-based linacs
 - * Mark Hogan and Carl Schroeder
- 4. Injector and beam manipulation concepts
 - * John Power and John Sheppard
- 5. Collimation & Focusing concepts
 - * Andrei Seryi and Rogelio Tomas
- 6. Cost optimization and future R&D priorities
 - * Jean-Pierre Delahaye and Tor Ruabenheimer

Detailed Questions for Groups: WG1 - 3

- * Goals for the three acceleration working groups are to:
 - Develop self-consistent sets of parameters aimed at a 1 TeV collider with 2e34 total luminosity (an initial version of these should be presented at the beginning of the workshop),
 - 2. List the critical R&D on the acceleration technology and the implied beam generation and focusing systems that are needed to utilize the technology,
 - 3. Consider the fundamental limits of the technology and describe the impact of approaching these, and
 - 4. Consider how new concepts for beam generation and focusing could have a major impact on the designs.

Detailed Questions for Groups: WG4 - 6

Goals of the Injector and Focusing groups are to:

- 1. Understand the current options and the potential of novel concepts for beam generation or focusing,
- 2. Identify main R&D issues in achieving the desired parameters listed by the acceleration concepts (WG 1-3), and
- 3. Understand potential of new concepts and suggest possible future R&D paths.

Goals of the Cost and R&D group are to:

- 1. Review the linac and linear collider cost drivers,
- 2. Review linear collider parameters and work with groups towards self-consistent parameters,
- 3. Understand luminosity versus cost for different collider options,
- 4. Provide an overview of the critical R&D towards cost optimization.

Excel Parameter Sheet

- Developed an Excelbased parameter sheet that can help think about the impact
- Have asked all acceleration conveners to consider parameters for a 1 TeV cms LC with a luminosity of 2x10³⁴ cm⁻²s⁻¹
- Meant as a starting point

Versions			
versions	100pm v1	100pm v2	100pm v3
more details	SC	S-band	X-band or two beam
Case ID	101	102	103
Ecms [GeV]	1000	1000	1000
gamma	9.78E+05	9.78E+05	9.78E+05
Mode	e+ e-	e+ e-	e+ e
Polarization	no,yes	no,yes	no,yes
Energy reach, S, GeV	1000	1000	1000
N	1.0E+09	1.0E+09	1.0E+08
nb	1200	120	120
DR kicker time [ns]	3	3	3
Min DR perimeter [km]	1.1	0.1	0.1
DR perimeter [km]	3	3	3
Number of Damping Rings	2	2	2
Length of both BDS [km]	4.5	4.5	4.5
Geographic gradient [Mev/m]	22	50	90
Length of both linacs [km]	45.5	20.0	11.1
Site length estimate [km]	50.0	24.5	15.6
Tsep in Linac [ns]	480.0	1.0	1.0
ave in train [A]	0.0003	0.1600	0.0160
rep [Hz]	5	50	500
Pb [MW]	0.5	0.5	0.9
Electron polarization, %	80	80	80
Positron polarization, %	N/A	N/A	N/A
Electron E-spread, %	0.14	0.14	0.14
Positron E-spread, %	0.07	0.07	0.07
P Parameters:			
gamepsX [m]	1.0E-06	1.0E-06	1.0E-07
gamepsY [m]	1.0E-10	1.0E-10	1.0E-10
x [m]	1.0E-02	1.0E-02	1.0E-0
oy [m]	1.0E-04	1.0E-04	1.0E-04
Travelling focus	yes	yes	yes
Z-distribution	Gauss	Gauss	Gauss

	WG1	WG2	WG3	WG4	WG5	WG6	Extra room	
	Microwave	Dielectric	Plasma	Beam generation	Collimation and focusing	Cost and R&D	for Discussion	
Wednesday 7/8								
9:00 - 10:30		Plenary (ROB ABCD)						
11:00 - 12:30		Plenary (ROB ABCD)						
2:00 - 3:30	ROB AB	Yellow	Madrone				Cedar	
4:00 - 5:30	ROB AB	Yellow	Madrone				Cedar	
6:00 - 7:30	ROB AB (specia	al)						
Thursday 7/9								
9:00 - 10:00		Plenary (ROB ABCD)						
10:30 - 12:30	ROB AB	Yellow		Kavli 2nd				
2:00 - 3:30				Kavli 3rd (WG2)	Yellow (WG3)	ROB AB (WG1)	Kavli 2nd	
4:00 - 5:30	ROB AB	ESB Tour	Madrone				Kavli 2nd	
Friday 7/10								
9:00 - 10:30				Yellow (WG3)	ROB (WG1)	Madrone (WG2)	Yellow	
11:00 - 12:30				ROB AB (WG1)	Yellow (WG2)	Madrone (WG3)	Cedar	
2:00 - 3:30	ROB AB	Kavli 3rd	Madrone	Fuji	Yellow	Cedar		
4:00 - 5:30		Summary (ROB ABCD)						
Every Day								
10:30 - 11:00	Coffee (Thursday 10:00 - 10:30)							
12:30 - 2:00	Lunch							
3:30 - 4:00	Coffee	-						
Plenary talks:	Wednesday							
9:00 - 9:30	Raubenheimer	Introduction and	Introduction and workshop goals					
9:30 - 10:00	Tantawi		Microwave-base high gradient structures and linacs					
10:00 - 10:30	Colby	Laser-driven die	Laser-driven dielectric structures and linacs					
11:00 - 11:30	Rosenzweig	Beam-driven dielectric structures and linacs						
11:30 - 12:00	Schroeder	Laser-driven plasmas and linacs						
12:00 - 12:30	Hogan	Beam-driven pla	smas and linacs					