Symposium in Memory of Robert H. Siemann and ICFA Mini-Workshop on Novel Concepts for Linear Accelerators and Colliders

Collimation & Focusing concepts

Rogelio Tomas, Andrei Seryi

WG5 summary July 7-10, 2009

* Thursday 7/9, 2:00 - 3:30, Orange room

- Joint with WG3 (Plasma)
 - 2:00 Discussion of program and challenges
 - 2:10 Plasma focusing Johnny Ng
 - 2:50 Discussion of ultimate IP parameters and path to 100pm beam and IP parameters of plasma (beam and laser driven) collider concepts
- * Friday 7/10, 9:00 10:30, ROB
 - Joint with WG1 (Microwave)
 - 09:00 RF linac and 100pm IP beam Sami Tantawi et al
 - 09:40 Discussion of parameter and cost optimization
- * Friday 7/10, 11:00 12:30, Yellow room
 - Joint with WG2 (Dielectric)
 - 11:00 Discussion of program & challenges
 - 11:10 Dielectric collimators
 - 11:50 Crystal Collimation

Alexej Grudiev Bob Noble

Background Study for NLC-Type Detector

[A. Weidemann et al., SLAC-PUB-9207, 2002]

Table 1: Summary of background sources from a plasma lens in NLC for a single beam crossing. The cross sections σ_{tot} are integrated as in Eq. (11) and (5); energy cuts (of 4 - 100 keV, > 100 keV) were imposed in the calculation of particle numbers in the last two columns; see Section 5.

Background source	$\begin{array}{c} \sigma_{tot} \ (\mathrm{cm}^{-2}) \\ \cos\theta \le 0.99 \end{array}$	Vertex detector	Drift chamber
Bhabha and Møller e^+, e^-	0	0	0
Elastic ep: e	0.103×10^{-45}	negligible	negligible
p	0.613×10^{-39}	negligible	negligible
Inelastic ep: e	0.132×10^{-33}	negligible	negligible
charged hadrons	0.396×10^{-29}	0.021	0.021
Inelastic γp : charged hadrons	0.372×10^{-28}	0.139	0.139
Compton γ 's from quadrupole	0.18×10^{-24}	270	380
Compton γ 's from plasma focusing	0.23×10^{-24}	290	580
Compton γ 's from bremsstrahlung	0.19×10^{-23}	970	480
Compton γ 's from beamstrahlung	0.52×10^{-25}	70	130

NLC beam parameters

•Plasma lens: overdense $n_p = 2x10^{18}$ cm⁻³, 3mm thick

Summary and Outlook

- Strong plasma focusing of e⁻ and e⁺ has been demonstrated for collider parameters; underdense plasma lens advantageous.
- Further experiments needed to study emittance preservation/growth mitigation: FACET, NLCTA, ...
- Plasma-induced detector background requires further study

Versions	100pm v1	100pm v2	100pm v3	
Ecms [GeV]	1000	1000	1000	
N	1.0E+09	1.0E+09	1.0E+08	
nb	1200	120	120	
Tsep in Linac [ns]	480.0	1.0	1.0	
lave in train [A]	0.0003	0.1600	0.0160	
f rep [Hz]	5	50	500	
Pb [MW]	0.5	0.5	0.5	
IP Parameters:				
gamepsX [m]	1.0E-06	1.0E-06	1.0E-07	
gamepsY [m]	1.0E-10	1.0E-10	1.0E-10	
bx [m]	1.0E-02	1.0E-02	1.0E-03	
by [m]	1.0E-04	1.0E-04	1.0E-04	
sigx_geom [m]	1.0E-07	1.0E-07	1.0E-08	
sigy_geom [m]	1.0E-10	1.0E-10	1.0E-10	
sigz [m]	5.0E-05	5.0E-05	5.0E-05	
Dx	0.03	0.03	0.28	
Dy	28.5	28.5	28.2	
Uave	0.179	0.179	0.178	
delta_B	0.019	0.019	0.019	
ngamma	0.38	0.38	0.38	
Hd	1.95	1.95	2.04	
Geom Lumi [cm-2 s-1]	4.67E+33	4.67E+33	4.67E+33	
Lumi [cm-2 s-1]	9.12E+33	9.12E+33	9.54E+33	

Discussing FFS for Novel Concepts in LCs

R. Tomás, B. Dalena and A. Seryi

Oide limit

Optics for L*=1m, β_y =15 μm

Scaled from CLIC FFS and re-optimized with MAPCLASS

Versions	100pm v1	100pm v2	100pm v3	100pm v4	100pm v5	100pm v6
more details	SC	S-band	X-band or two beam	X-band or two beam	s-band	CLIC500
Case ID	101	102	103	104	LiN	105
Ecms [GeV]	1000	1000	1000	1000	1000	500
gamma	9.78E+05	9.78E+05	9.78E+05	9.78E+05	9.78E+05	4.89E+05
Energy reach, S, GeV	1000	1000	1000	1000	1000	500
N	1.0E+09	1.0E+09	1.0E+08	1.0E+08	1.0E+08	6.0E+09
nb	1200	120	120	1200	1200	312
Geographic gradient [Mev/m]	22	50	90	90	90	80
Length of both linacs [km]	45.5	20.0	11.1	11.1	11.1	6.3
Site length estimate [km]	50.0	24.5	15.6	15.6	15.6	10.8
Tsep in Linac [ns]	480.0	1.0	1.0	0.1	0.1	0.5
lave in train [A]	0.0003	0.1600	0.0160	0.1600	0.1600	1.9200
f rep [Hz]	5	50	500	50	50	50
Prf [MW]			207.7	20.8	6.9	12.0
Pb [MW]	0.5	0.5	0.5	0.5	0.5	3.7
				tentat	ive	
IP Parameters:				to nat		
gamepsX [m]	1.0E-06	1.0E-06	1.0E-07	1.0E-07	1.0E-07	1.0E-07
gamepsY [m]	1.0E-10	1.0E-10	1.0E-10	1.0E-09	1.0E-09	1.0E-09

Original

Improved

Ref.

- * Parameters resulted from joint meeting with WG1
- * Optimized to get higher RF-beam efficiency
- Further optimization of RF-beam efficiency drives the parameters to higher frequency and possibly using liquid nitrogen cooled Copper structures

Dielectric Collimators for the CLIC Beam Delivery System?

First ideas from studies for the LHC collimators

E. Métral, A. Grudiev, G. Rumolo, B. Salvant (also at EPFL, Lausanne), R. Tomàs CERN, Geneva

Many thanks for their help and advice to

E. Adli, R. Calaga, F. Caspers, A. d'Elia, A. Latina, F. Roncarolo, D. Schulte, C. Simon

"New" formalisms (Zotter/Metral, Burov/Lebedev)

Vertical Electric field simulated by particle studio

Effects in bent crystals

Angle of beam after passing the crystal, vs crystal orientation Data plot from Walter Scandale et al

- 1 "amorphous" orientation
- 2 channeling
- 3 de-channeling
- 4 volume capture
- 5 volume reflection

Crystal Channeling Radiation and Volume Reflection Experiments at SLAC

Robert Noble, Andrei Seryi, Jim Spencer, Gennady Stupakov SLAC National Accelerator Laboratory

LC Collimation concept based on VR radiation

23 GeV: $\theta_{c 0}$ (~ E^{-1/2})=0.044 mrad, R_{crit} (~ E)=0.05 m, L_{dech} (~ E)=0.75 mm

Wiggler Model Estimate of 23 GeV e- VR Radiation

G. Stupakov

4. The VR radiation spectrum for this case is estimated to have photons in the range 200 – 600 MeV using a simple wiggler model, with about 20 channel wiggles providing most of the radiation.

- * We had fruitful and enjoyable discussions
- It is good that there are parameters sets for all options that allow comparison and further optimization
- Discussion of paths to 100pm beam started and resulted in some interesting ideas
- Hope that some of these ideas will find their way to a machine that will be constructed