

#### The µeV-PeV Neutron Star Laboratory

(With some recent progress at GeV)

Roger W. Romani Physics/KIPAC Stanford University



# **Roger B. and Neutron Stars**

- Magdalene 1967-1970
  - CP 1919+21 Nov '67 "It is perhaps hard now to communicate the excitement generated by this discovery (a fascination that filtered through to me a first-year Cambridge undergraduate at the time)..." RDB 1992 Phil. Trans, 341, 177



- 82 Publications with Pulsar and/or Neutron Star
- 1973 'Ghost Supernova Remnants' (Ostriker, Pacini & Rees)
- Many **2009** Fermi LAT publications



### **Neutron Stars**

- Where Astronomy meets Physics → Astrophysics
- NS as high density objects (Eγ~100eV, kT < GeV)
  - EOS constraints on  $\rho > \rho_{Nucl}$  at kT << GeV
  - M/R M from dynamics, R from surface emission
  - Cooling limits on interior condensates, superfluidity
- Radio Pulsars (Εγ~10<sup>-6</sup>eV—10<sup>-3</sup>eV)
  - stable point mass clocks
  - binary dynamics, evolution
  - GR effects including intervening gravitational waves
- NS B fields: ( $E\gamma \rightarrow GeV$ , leptons to 30TeV, baryons?)
  - matter with B>10<sup>12</sup>G
  - magnetospheres and acceleration
  - magnetars, objects with B fields near the dynamical limit
- Accretion Systems, etc. (Eγ~keV+)
  - Thermal physics... but may be used to probe mass and photon orbits in strong gravitational fields



# **RDB work on Neutron Stars**

- Radio Pulsars
  - timing models (w/ Teukolsky and others)
  - origin and evolution (w/ many, starting from Smarr)
  - Pulsar Scintillation effects (w/ Narayan)
  - Radio Emission Mechanisms (w/ Lyutikov)
  - eclipses (Various)
- NS as high density bodies
  - thermal emission (w/ RWR)
- NS B fields:
  - Biermann battery origin (w/ Hernquist)
- Accretion Systems, etc.
  - surface layer evolution (Konigl, Blaes, etc.)
  - starquakes (Madau, Phinney,...)

MSP: Precision Timing Industry - MSP in GC

B=0 atm, then. High B atm, now (Ho)

Only Limited Progress

Maybe not GRBs... Magnetars?

ICS γ-rays from Cyg X-3 ? ('77 w/ Fabian, Hatchett)



- Radio coherent
  - the handle for precision physics
- optical/IR synchrotron magnetospheric emission
- UV-soft X-rays
  - heat of formation
  - heat from magnetospheric backflow
- X-ray to ~MeV -- synchrotron magnetospheric emission
- MeV-10GeV magnetospheric curvature, (ICS?)
- >10GeV IC from PWN beam dump
- many TeV magnetospheric, PWN termination shock e+/e-
- → PeV particles: SNR shockwave acceleration



Where's the Power??

Power νF<sub>ν</sub> peak: GeV γ-rays

Thermal Surface Emission: ~0.1keV X-rays

Coherent Radio Pulse: 10<sup>-6</sup>-10<sup>-4</sup>eV radio waves











#### **Crab** Pulsar





10<sup>4</sup>



### **Crab Nebula**



# The LAT Pulsar Sky

49. ... d : ...

22 Radio Young Radio/γ-ray Pulsars
17 Young Pulsars Discovered in the γ-ray
8 Millisecond γ-ray Pulsars

Pulses at 1/10<sup>th</sup> Real Rate



# **Unipolar Inductor'**

- $\frac{1}{2}$  I  $\Omega^2 \rightarrow$  plasma and photons
  - mechanical energy of compact object rotation
  - Coupled through magnetic field
  - Poynting flux extraction, particles
  - High energy Radiation
- RDB: A surface is optional...
- This Radiation is `What Fermi Sees'
  - (OK, the point sources...)





### The 1 year LAT sky

• Blazar UPI at large |b|

• Pulsar UPI along the plane

#### Interp: Location, Location, Location Observer angle Inclination angle Open Get the **geometry** right! 1) α magnetic Radio/ field lines Polar cap 2) Work out the electrobeam dynamics **Emission Sites:** $R_*, R_{LC}, R(Ω.B)=0$ Slot gap Polar Cap 1) Gamma rays 2) 'Outer Gap' Magnetic 3) 'Slot Gap' axis

**RDBfest–RWR - 14** 

Harding



# **Excluding the Polar Caps**

- Beaming
  - Small Polar caps  $\theta \sim 2P^{-1/2}/\sin\alpha \ deg$  –- Wide pulses only for  $\alpha \sim 0$
  - Expect radio and γ-ray pulse to line up



# Step Altitude/Energy Pairs → Radiation

- Low Altitude gap -<sup>1</sup>/<sub>1</sub> Radio
- High Altitude → optical-γ-ray
- Basic Geometry Vacuum Models







### **Acceleration at High Altitudes**

- Results: Wider beams, high sky coverage
- Dominant radiation seen is Curvature from ~10TeV e+e-
- How? Breakdown of Force-Free Conditions





Slot gap' (Arons '81)/Two Pole Caustic Geometry (Harding & Colleagues)RI GR potential (Muslimov & Tsygan '98)

'Outer Gap' Holloway '73 → Cheng, Ho & Ruderman '86 RWR '96



# **Numerical Experiments**

- Computational Realizations of Completely Force-Free Magnetospheres
  - Nice simulations and movies (Spitkovsky 08)

 $\alpha$ =60° Global Force Free Model





Radio – coherent IR-UV, hard X – synchrotron Soft X – thermal GeV – CR



#### Key Point:

pair cascade from  $\gamma\gamma \rightarrow e+e$ w, gap potential &  $\gamma_{Max}$  grow until limited by Wein 'wall' of thermal surface flux:

$$\varepsilon_{\rm Th} \approx \frac{2(m_e c^2)^2}{(1-\cos\theta)\varepsilon_{\gamma}}$$

Few GeV  $E_c$  are natural for thermally controlled outer gaps.  $E_c$  grows as star cools

#### → requires 10-30TeV e<sup>+/-</sup>







## Using the LAT to Probe Pulsar Magnetospheres

- Step 2 use phase-resolved <u>spectra</u> to map particle acceleration
  - Radiation-reaction limited CR cut-off depends on gap fields





### Conclusions

- PSRs: charge-starved unipolar inductors
  - **Bright γ-ray action at large altitude:**
  - B ~1/r<sup>3</sup> makes this a 'simple', few parameter problem... P, B<sub>0</sub>,  $\alpha$ ,  $\zeta$ - little else  $\rightarrow$  should be solvable!
- With *Fermi* LAT:
  - We are probing the bulk energetics of the pulsar machine
  - → lead on to a deeper understanding of magnetosphere electrodynamics.

# KIPAC

# **Thanks and Congratulations**

- For giving us a paradigm to think about neutron star (and many other astrophysical) problems
- Looking forward to continued work on UPIs and other highly magnetized systems!

**Regai**res **Damichant Blaieddord**