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A game of two halves...A game of two halves...

Turbulent flame modeling for
carbon-burning flames at large scales
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Buoyant burning bubbles
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First Half ObjectiveFirst Half Objective
• Turbulent flame model for carbon-burning in SNe Ia
• Previous study (APS 2008) examined fully-resolved small-scale

carbon-burning thermonuclear flames at high turbulence levels
• Present objective is to investigate much larger length scales
• Construct a turbulent flame model for large-scale distributed burning

• Theoretical treatment of burning in distributed regime
• Based on Damköhler scaling (1940)
• Predict scaling relations for turbulent flame speed and width
• Three-dimensional simulations to test predictions
• Aspden, Bell, Woosley, Distributed Flames in SNe Ia, ApJ, 710, 2010
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Previous studyPrevious study
• Aspden, Bell, Day, Woosley and Zingale

• Turbulence-Flame Interactions in Type Ia Supernovae, ApJ 689 (2008)
• At sufficiently high turbulence, a distributed flame was observed
• Mixing and transport are dominated by turbulence
• Turbulent flame speed much lower than turbulent intensity
• Turbulent flame width much larger than integral length scale
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Theory Theory –– Small  Small DamköhlerDamköhler

• High Karlovitz number, small Damköhler number
• Damköhler (1940) “small-scale turbulence” regime
• Argued turbulence modifies transport – dominant mixing is turbulent
• Draw analogy with laminar flames
• Predict turbulent flame speed and width (in terms of diffusion and time scale)

• Time scale is inductive, longer than turbulence time scale, assumed constant
• Diffusion coefficient is due to turbulence (let’s use a simple eddy viscosity)

• Gives scaling relations for fixed Karlovitz number (equivalent to a fixed
energy dissipation rate)

• Note for small Damköhler number
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Theory Theory –– Break Down Break Down

• Scaling breaks down when turbulence time scale comparable with
turbulent nuclear burning time scale

• Mixing no longer faster than burning
• Defining a turbulent Damköhler number

• Expect break down of the scaling relations at DaT=1
• Defining a turbulent Karlovitz number as

• It can be shown that

• So at the breakdown of the scaling relations
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Theory Theory –– Large  Large DamköhlerDamköhler
•  For larger DaT, turbulence cannot broaden the flame any further
•  A limiting behaviour is reached
•  Burns as a turbulently broadened effective unity Lewis number flame
•  Local flame speed and width are constant (higher due to enhanced area)

(on scale of l¸)
•  Refer to this kind of burning as a ¸-flame
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Theory Theory –– Lambda flames Lambda flames

• Can we predict the ¸-flame properties?
• Depend solely on turbulence intensity and burning time scale
• Dimensional analysis – four quantities in two units
• Two dimensionless quantities

• Both are identically equal to one, which implies

• What is the turbulent nuclear burning time scale?
• Reference case with turbulent intensity and integral length
• Measure the turbulent flame speed only
• Use the relation
• Then, by definition
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Modified Regime DiagramModified Regime Diagram
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Numerical SolverNumerical Solver
• Written at Center for Computational Sciences and Engineering
• Based on 3D variable-density incompressible Navier-Stokes solver
• Extended for low Mach number SNe flames
• Cartesian finite-volume discretisation
• Predictor-corrector approach
• Advection-diffusion and chemistry are operator split
• Approximate projection for divergence constraint
• Overall second-order accurate in space and time
• Adaptive mesh refinement to focus resolution on regions of interest
• Parallelised – performs well up to several thousand processors
• Capable of implicit LES calculations – don’t need a turbulence model

• Aspden et. al, CAMCoS 3 (2008)

• Further details can be found in Bell et. al, JCP 195 (2004)
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SchematicSchematic

Three dimensional box

Fuel below ash

Propagates downwards

High aspect ratio

Forced throughout

Periodic sides

Solid base

Outflow at top
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ProcedureProcedure

• Aim is to simulate larger length scales (Da) keeping Ka fixed
• Resolution requirements become relaxed for distributed flames
• Mixing due to turbulence, relevant scales grow with integral length
• Start with high Karlovitz number case from ApJ paper (256x256x2048)
• Reduce resolution by a factor of 8 (32x32x256)

• i.e. computational cell size 8 times larger
• Use turbulent flame speed as diagnostic check
• Use the new cell size to run in a domain 8 times larger

• Adjust turbulent intensity accordingly to fix energy dissipation rate (Ka)
• Repeat
• Limited by DaT – expect to be reasonably valid for DaT<1
• For DaT>1, relevant scales are fixed
• Seven cases A-G
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Slices of DensitySlices of Density
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Turbulent Flame SpeedsTurbulent Flame Speeds
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Turbulent Flame SpeedsTurbulent Flame Speeds
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First Half ConclusionsFirst Half Conclusions

• Formulated and verified scaling relations at high Ka
• More importantly extending to high Da

• Can predict constant local flame speed and width

• Perfectly suited to level set approach
• Suggested an approach to describe the flame speed

• Tens of thousands times larger than original study in each dimension

• Overall flame speed is highly fluctuating

• Possible that these fluctuations may lead to run-away

• Aspden, Bell, Woosley, Distributed Flames in SNe Ia, ApJ, 710, 2010
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Second Half OutlineSecond Half Outline

• Buoyant burning bubbles – first flames
• Ignition leads to isolated burning bubbles that rise due to buoyancy

• Previous work has focused on early stages

• Here looking for late-time self-similar asymptotic behavior?

• Known in fluid dynamics literature as thermals (buoyant vortex rings)

• Theoretical approach based on Morton, Taylor, Turner (1956)
• Entrainment assumption

• Numerical simulations to investigate this theory

18



ccse.lbl.gov

Morton Taylor Turner TheoryMorton Taylor Turner Theory

• Idealized thermal
• Represent thermal as sphere of radius b(t) at height zb(t)

• Entrainment assumption
• Fluid is entrained into the thermal at a rate proportional to the rise height

• Mixing is sufficiently fast that entrained fluid is mixed instantaneously
• Conservation equations for volume, momentum and buoyancy

• Interesting property – evolves in a cone
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Initial ConditionsInitial Conditions

• 864 cm cube domain

• Resolutions up to 40963

• Base grid 5123 + 3 levels AMR

• Initial bubble radius about 14cm

• Perturbation to break symmetry

• Fuel density 1.5e7g/cm3

• Gravity 109 cm/s2

• Solid base, outflow elsewhere
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Inert ThermalInert Thermal
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Inert ThermalInert Thermal

Tracer SlicesTracer Slices
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MTT Theory RevisitedMTT Theory Revisited

• How do we account for burning?
• Assume: Entrained fluid can be considered to burn instantly
• Have two discrete states – inside/outside
• Two constant densities ) one conservation equation is redundant
• Conservation equations for volume and momentum

• Again conical:

• Second-order non-linear ODE:

• Which has the solution (for suitably defined virtual origin)
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Burning BubbleBurning Bubble

VorticityVorticity and and
BurningBurning
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Buoyant BubbleBuoyant Bubble

Tracer SlicesTracer Slices
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Bubble Height Bubble Height vsvs Radius (Cone) Radius (Cone)
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Bubble Height Bubble Height vsvs Time Time
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Second Half ConclusionsSecond Half Conclusions

• Modified MTT theory to account for burning

• Appears to provide good predictions
• But requires immense simulations

• Further work required for generality of entrainment coefficient

• Generalization of theory for application to full stars
• Ambient stratification (variations in density and pressure)
• Background turbulence
• Straightforward to formulate one-dimensional system of ODEs
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