Math (\mathbf{s}) Flame Plyysifes
 Andy Aspden John Bell
 Lawrence Berkeley National Laboratory

Stan Woosley
UC Santa Cruz

A game of two halves...

Turbulent flame modeling for
carbon-burning flames at large scales

Buoyant burning bubbles

First Half Objective

- Turbulent flame model for carbon-burning in SNe la
- Previous study (APS 2008) examined fully-resolved small-scale carbon-burning thermonuclear flames at high turbulence levels
- Present objective is to investigate much larger length scales
- Construct a turbulent flame model for large-scale distributed burning

First Half Outline

- Theoretical treatment of burning in distributed regime
- Based on Damköhler scaling (1940)
- Predict scaling relations for turbulent flame speed and width
- Three-dimensional simulations to test predictions
- Aspden, Bell, Woosley, Distributed Flames in SNe Ia, ApJ, 710, 2010

Previous study

- Aspden, Bell, Day, Woosley and Zingale
- Turbulence-Flame Interactions in Type la Supernovae, ApJ 689 (2008)
- At sufficiently high turbulence, a distributed flame was observed
- Mixing and transport are dominated by turbulence
- Turbulent flame speed much lower than turbulent intensity
- Turbulent flame width much larger than integral length scale
Burning rate \quad Temperature
Low Ka

Regime Diagram

l / l_{L}
Turbulent intensity and integral length

$$
\check{u} \quad l
$$

Laminar flame speed and width

$$
s_{L} \quad l_{L}
$$

Karlovitz number

$$
\mathrm{Ka}^{2}=\frac{\check{u}^{3}}{s_{L}^{3}} \frac{l_{L}}{l}
$$

Damköhler number

$$
\mathrm{Da}=\frac{s_{L}}{\check{u}} \frac{l}{l_{L}}
$$

rerrerrt

Theory - Small Damköhler

- High Karlovitz number, small Damköhler number
- Damköhler (1940) "small-scale turbulence" regime
- Argued turbulence modifies transport - dominant mixing is turbulent
- Draw analogy with laminar flames
- Predict turbulent flame speed and width (in terms of diffusion and time scale)

$$
s_{T}=\sqrt{\frac{\mathcal{D}_{T}}{\tau_{\mathrm{nuc}}^{T}}} \quad l_{T}=\sqrt{\mathcal{D}_{T} \tau_{\mathrm{nuc}}^{T}}
$$

- Time scale is inductive, longer than turbulence time scale, assumed constant
- Diffusion coefficient is due to turbulence (let's use a simple eddy viscosity)

$$
\mathcal{D}_{T}=\alpha \check{u} l=\alpha \varepsilon^{* 1 / 3} l^{4 / 3} \quad\left(\varepsilon^{*}=\check{u}^{3} / l\right)
$$

- Gives scaling relations for fixed Karlovitz number (equivalent to a fixed energy dissipation rate)

$$
s_{T} \sim l^{2 / 3} \quad l_{T} \sim l^{2 / 3} \quad \check{u} \sim l^{1 / 3} \quad \tau_{T}=l / \check{u} \sim l^{2 / 3}
$$

- Note for small Damköhler number

$$
s_{T}<\check{u} \quad l_{T}>l \quad \tau_{\text {nuc }}^{T}>\tau_{T}
$$

Theory - Break Down

- Scaling breaks down when turbulence time scale comparable with turbulent nuclear burning time scale

$$
\tau_{T} \approx \tau_{\text {nuc }}^{T}
$$

- Mixing no longer faster than burning
- Defining a turbulent Damköhler number

$$
\mathrm{Da}_{T}=\frac{\tau_{T}}{\tau_{\text {nuc }}^{T}}=\frac{s_{T}}{\check{u}} \frac{l}{l_{T}}=\sigma \mathrm{Da} \quad\left(\sigma=\frac{\tau_{\text {nuc }}^{L}}{\tau_{\text {nuc }}^{T}}\right)
$$

- Expect break down of the scaling relations at $\mathrm{Da}_{\mathrm{T}}=1$
- Defining a turbulent Karlovitz number as

$$
\mathrm{Ka}_{T}^{2}=\frac{\breve{u}^{3}}{s_{T}^{3}} \frac{l_{T}}{l}
$$

- It can be shown that

$$
\mathrm{Da}_{T}^{2} \mathrm{Ka}_{T}^{2}=1
$$

$$
(\alpha=1)
$$

- So at the breakdown of the scaling relations

$$
\mathrm{Da}_{T}=1 \quad \mathrm{Ka}_{T}=1 \quad s_{T}=\check{u} \quad l_{T}=l
$$

Theory - Large Damköhler

- For larger Da_{T}, turbulence cannot broaden the flame any further
- A limiting behaviour is reached
- Burns as a turbulently broadened effective unity Lewis number flame
- Local flame speed and width are constant (higher due to enhanced area)

$$
s_{T}=s_{\lambda} \quad l_{T}=l_{\lambda} \quad(\text { on scale of } I)
$$

- Refer to this kind of burning as a .-flame

Theory - Lambda flames

- Can we predict the ,-flame properties?
- Depend solely on turbulence intensity and burning time scale
- Dimensional analysis - four quantities in two units $\varepsilon^{*}, \tau_{\text {nuc }}^{T}, s_{\lambda}, l_{\lambda}$
- Two dimensionless quantities

$$
\Pi_{1}=\frac{\varepsilon^{*} l_{\lambda}}{s_{\lambda}^{3}} \quad \Pi_{2}=\frac{\tau_{\text {nuc }}^{T} s_{\lambda}}{l_{\lambda}}
$$

- Both are identically equal to one, which implies

$$
s_{\lambda}=\sqrt{\varepsilon^{*} \tau_{\text {nuc }}^{T}} \quad l_{\lambda}=\sqrt{\varepsilon^{*} \tau_{\text {nuc }}^{T}}
$$

-What is the turbulent nuclear burning time scale?

- Reference case with turbulent intensity and integral length \check{u}_{0}, l_{0}
- Measure the turbulent flame speed only s_{T}^{0}
- Use the relation $\mathrm{Da}_{T}^{2} \mathrm{Ka}_{T}^{2}=1 \quad \Longrightarrow \quad l_{T}^{0}=\frac{\check{u}_{0} l_{0}}{s_{T}^{0}}$
- Then, by definition

$$
\tau_{\text {nuc }}^{T}=\frac{\check{u}_{0} l_{0}}{s_{T}^{0^{2}}}
$$

Modified Regime Diagram

Numerical Solver

- Written at Center for Computational Sciences and Engineering
- Based on 3D variable-density incompressible Navier-Stokes solver
- Extended for low Mach number SNe flames
- Cartesian finite-volume discretisation
- Predictor-corrector approach
- Advection-diffusion and chemistry are operator split
- Approximate projection for divergence constraint
- Overall second-order accurate in space and time
- Adaptive mesh refinement to focus resolution on regions of interest
- Parallelised - performs well up to several thousand processors
- Capable of implicit LES calculations - don't need a turbulence model
- Aspden et. al, CAMCoS 3 (2008)
- Further details can be found in Bell et. al, JCP 195 (2004)

Schematic

Three dimensional box
Fuel below ash
Propagates downwards
High aspect ratio
Forced throughout
Periodic sides
Solid base
Outflow at top

Procedure

- Aim is to simulate larger length scales (Da) keeping Ka fixed
- Resolution requirements become relaxed for distributed flames
- Mixing due to turbulence, relevant scales grow with integral length
- Start with high Karlovitz number case from ApJ paper (256x256x2048)
- Reduce resolution by a factor of 8 ($32 \times 32 \times 256$)
- i.e. computational cell size 8 times larger
- Use turbulent flame speed as diagnostic check
- Use the new cell size to run in a domain 8 times larger
- Adjust turbulent intensity accordingly to fix energy dissipation rate (Ka)
- Repeat
- Limited by Da_{T} - expect to be reasonably valid for $\mathrm{Da}_{\mathrm{T}}<1$
- For $\mathrm{Da}_{\mathrm{T}}>1$, relevant scales are fixed
- Seven cases A-G

Slices of Density

Turbulent Flame Speeds

Turbulent Flame Speeds

First Half Conclusions

- Formulated and verified scaling relations at high Ka
- More importantly extending to high Da
- Can predict constant local flame speed and width
- Perfectly suited to level set approach
- Suggested an approach to describe the flame speed
- Tens of thousands times larger than original study in each dimension
- Overall flame speed is highly fluctuating
- Possible that these fluctuations may lead to run-away
- Aspden, Bell, Woosley, Distributed Flames in SNe la, ApJ, 710, 2010

Second Half Outline

- Buoyant burning bubbles - first flames
- Ignition leads to isolated burning bubbles that rise due to buoyancy
- Previous work has focused on early stages
- Here looking for late-time self-similar asymptotic behavior?
- Known in fluid dynamics literature as thermals (buoyant vortex rings)
- Theoretical approach based on Morton, Taylor, Turner (1956)
- Entrainment assumption
- Numerical simulations to investigate this theory

Morton Taylor Turner Theory

- Idealized thermal
- Represent thermal as sphere of radius $b(t)$ at height $z_{b}(t)$
- Entrainment assumption
- Fluid is entrained into the thermal at a rate proportional to the rise height
- Mixing is sufficiently fast that entrained fluid is mixed instantaneously
- Conservation equations for volume, momentum and buoyancy

$$
\begin{array}{rlrl}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{4}{3} \pi b^{3}\right) & =4 \pi b^{2} \alpha u_{b} & & \alpha \\
& \begin{array}{l}
\text { entrainement coeff. } \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{4}{3} \pi b^{3} \rho_{i} u_{b}\right)
\end{array} & =\frac{4}{3} \pi b^{3}\left(\rho_{e}-\rho_{i}\right) g & \\
\text { interior density } \\
\rho_{e} & & \text { exterior density } \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{4}{3} \pi b^{3} k g \frac{\rho_{e}-\rho_{i}}{\rho_{0}}\right) & =-\frac{4}{3} \pi b^{3} u_{b} N^{2} & & \text { reference density } \\
\text { - Interesting property } & \text { evolves in a cone } & & \text { rise velocity } \\
& & & \\
& & \text { buoyancy freq. }
\end{array}
$$

Initial Conditions

- 864 cm cube domain
- Resolutions up to 4096^{3}
- Base grid $512^{3}+3$ levels AMR
- Initial bubble radius about 14 cm
- Perturbation to break symmetry
- Fuel density $1.5 \mathrm{e} 7 \mathrm{~g} / \mathrm{cm}^{3}$
- Gravity $10^{9} \mathrm{~cm} / \mathrm{s}^{2}$
- Solid base, outflow elsewhere

Inert Thermal

Vorticity 3d Rendering

Inert Thermal

Tracer Slices

MTT Theory Revisited

- How do we account for burning?
- Assume: Entrained fluid can be considered to burn instantly
- Have two discrete states - inside/outside
- Two constant densities) one conservation equation is redundant
- Conservation equations for volume and momentum

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{4}{3} \pi b^{3}\right) & =4 \pi b^{2} \sigma \alpha u_{b} & \sigma & =\frac{\rho_{e}}{\rho_{i}} \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{4}{3} \pi b^{3} u_{b}\right) & =\frac{4}{3} \pi b^{3} \sigma g^{\prime} & g^{\prime} & =\frac{\rho_{e}-\rho_{i}}{\rho_{e}} g
\end{aligned}
$$

- Again conical: $b=\sigma \alpha z$
- Second-order non-linear ODE: $\frac{\mathrm{d}^{2} z_{b}}{\mathrm{~d} t^{2}}+\frac{3}{z_{b}}\left(\frac{\mathrm{~d} z_{b}}{\mathrm{~d} t}\right)^{2}=\sigma g^{\prime}$
- Which has the solution (for suitably defined virtual origin) $z_{b}=A t^{2}$

Burning Bubble

Vorticity and Burning

3d Rendering

Buoyant Bubble

Tracer Slices

Bubble Height vs Radius (Cone)

Bubble Height vs Time

CENTER FGR CDMPUTATIGNAL SIIENCES AND ENGINEERING

Second Half Conclusions

- Modified MTT theory to account for burning
- Appears to provide good predictions
- But requires immense simulations
- Further work required for generality of entrainment coefficient
- Generalization of theory for application to full stars
- Ambient stratification (variations in density and pressure)
- Background turbulence
- Straightforward to formulate one-dimensional system of ODEs

