MHD Core Collapse Símulation with Cosmos++ -- MRI in core collapse --

Shízuka Akiyama (KIPAC/SLAC) Jay Salmonson (LLNL) ScíDAC CAC Meeting May 20, 2010

Outline

- Motivation for MHD core collapse
- Physics and Importance of the MRI
- Numerical Method (Cosmos++)
- Movíes
- On going...
- Summary

Motivation for MHD core collapse

- Pulsars/magnetars = neutron stars with rotation and magnetic field
 - Clearly, rotation and magnetic field are present
 - Aspherical explosion (long lived bipolar axis)
 - SN-GRB connection
 - Magnetar formation
- Rotation + magnetic fields => MHD jets
- Jet induced explosion
 - LeBlanc & Wilson (1970)
 - First MHD core collapse simulation
 - Bí-polar magnetic outflow
 - Burrows et al. (2007)
 - Fírst 2D rotating, multi-group RMHD simulation

Burrows et al. (2007)

Why Rotation & Magnetic Field?

- Uncertainty in initial iron core
 - Requires initial moderate to rapid rotation
 - Requires initial strong magnetic field?
- Questions
 - MHD explosion typical or special?
 - Dynamical or non-dynamical MHD effects?
 - If typical, B-field amplification mechanism?
 - Poloidal field => compression (proportional to density ratio)
 - Toroidal field => wrapping of field line (linear in time)
 - MRI (magnetorotational instability) in core collapse?
 - Linear regime => exponential growth!
 - Small scale B

Magnetorotational Instability

• Dísk

- L grad +, Ω grad Rayleigh stable
- MRI is unstable when
 - Angular velocíty has negatíve gradient
 - Weak seed magnetic field is present
 - Stability criteria independent of B
 - Dynamical instability
- MRI in disk and star
 Gradient in variables
 - Convection

MRI in core collapse (1D)

- 1D model calculation
- COLLAPSE code (Myra et al. 1987)
- Rotation profiles
 - $\Omega_0(r) = \Omega_0 \frac{R^2}{r^2 + R^2}$
- MRI crítería

$$N^2 + \frac{d\Omega^2}{d\ln r} <$$

- Exponential growth $\tau_{\text{max,en}} = 4\pi \left| \frac{N^2}{2\Omega} + \frac{d\Omega}{d\ln r} \right|^{-1}$
- Saturation strength $B_{\rm sat}^2 \sim 4\pi \rho r^2 \Omega^2$

Radius (cm)

$$B_{\max,\text{en}}^2 = -B_{\text{sat}}^2 \cdot \left[\frac{1}{8\pi^2} \left(1 + \frac{1}{8} \left(\frac{N^2}{\Omega^2} + \frac{d\ln\Omega^2}{d\ln r}\right)\right) \left(\frac{N^2}{\Omega^2} + \frac{d\ln\Omega^2}{d\ln r}\right)\right]$$

 No rotational & magnetic feedback Akiyama et al. (2003)

Amplified Field

Akiyama et al. (2003)

Generic shearing environment
Peak B ~ 10^{15 - 16} G within few tens of msec

Simulating MRI growth

- Core collapse is messy place
- Multí-dímensional numerical study is required
- Length scale requirement
 - $-\lambda^{-1.8} \text{ km} \times (\text{B}/10^{13}[\text{G}]) \times (1000 \text{ [rad/s]/ }\Omega) \times (10^{13}[g/\text{cm}^{3}]/\rho)^{0.5}$
 - Few 10 gríd/wavelength required (Obergaulinger et al. 2009, Shibata et al. 2006)
 - 0.2 0.6 km/grid resolution for resolving the MRI growth!
- Local (or semi-global) símulation (Obergaulinger et al. (2009))
 - -15.5 km +/-1 (or 2) km shearing box
 - Saturation at ~ 1015G, confirming Akiyama et al. (2003)
- Quasi-global simulation!

Numerical Method: Cosmos++

- Annínos, Fragíle, & Salmonson (2005)
- Shen/parametric EOS
 polytrope/s15b7s2 (15 Msolar, Woosley & Weaver 1995)
- Parametríc deleptonization/ entropy evolution (Liebendorfer 2005)
- Rotational profile

$$\Omega_0(r) = \Omega_0 \frac{R^2}{r^2 + R^2}$$

- Magnetic profile Poloidal field with current loop

Models

• 2D core collapse (base sím.) $-R = 0.9e8 \text{ cm}, \Omega_0 = 2.0 \text{ rad/s}, B_0 = 1.0e12 \text{ G}$ -nx = 256, ny = 64, $\Delta r \sim 255$ m (@ 12 km) • Remap sím. (~35 msec after bounce) - Radíus: 12 - 68 km - Density: 6.0el3 ~ 1.5ell g/cm³ - Magnetic field: ~1.0e15 - Std: nx = ny = 1024, $\Delta r_{min} = 11 \text{ m}$, $\Theta = 120$ - Stdx2: $nx = ny = 2048, \Delta r_{min} = 5.5 m, \Theta = 120$ - Stdx2_150: nx = ny = 2048, $\Delta r_{min} = 5.5m$, $\Theta = 150$

Density(color) & velocity(vector)

B_{ϕ} (color) & $B_{poloidal}$ (streamline)

Remapping

Remapping

Stability

Reighleigh stable
Convectively stable
MRI <u>unstable</u>?

Movies

- Std
 - MRI crít & ratío (shear/BV)
 - Angular momentum & P_mag/P_gas
 - Entropy & mass density
- Stdx2
 - Angular momentum & P_mag/P_gas
 Entropy & mass density
- Stdx2 150
 - Angular momentum & P_mag/P_gas
 - Entropy & mass density

- 44 msec after bounce (~9 msec after remap) • Very similar evolution

15 msec after remapping Transport of angular momentum due to the MRI!

Time=3.94752

Entropy mixing due to the MRI!

E_kín & E_mag

- e_mag/e_kin~ 0.1
- e_mag continues to rise
- Higher resolution models
 - rapid rise in e_kin
 - Larger e_mag?
- Exponential growth?

On going...

- Explore more parameters
 - Smaller Bo
 - -loop radius
 - -field geometry
 - $-R \otimes \Omega_0$
 - Base síms.
 - Remap timing
- Higher res 2D remap – Convergence?
- 3D remap - Saturation?

Summary

- 2D core collapse
 - Hydrodynamically stable
 - Adding magnetic field makes unstable!
- Realistic quasi-global simulation
 - 12 68 km with Drmin = 5.5 m
 - Background velocity field
 - Unstable region spreads and fills the volume
 - How big will the unstable region become?
 - Angular momentum, entropy mixing
 - Effects on neutrino cooling/heating?
 - Higher resolution => more development
 - Resistive heating due to turbulence? (Thompson et al. 2005)
 - MRI can affect non-dynamical processes!
 - Effects on explosion dynamics requires true global sim. In 3D
- No exponential growth (yet??)
- Interaction with SASI?