

Gary A Glatzmaier University of California, Santa Cruz MHD simulations using a 3D anelastic spectral code:

Stellar and planetary dynamos

Magnetic field induction in the subsurface tidally-driven oceans of Europa and Titan An idea: add magnetic fields to MAESTRO and CASTRO

Gauss' Law	$\mathbf{\nabla} \mathbf{\cdot} \mathbf{B} = 0$	poloidal toroidal decomposition
Magnetic induction Eq	$\frac{\partial \mathbf{B}}{\partial t} = \boldsymbol{\nabla} \mathbf{x} (\mathbf{v} \mathbf{x} \mathbf{B}) - \boldsymbol{\nabla} \mathbf{x} (\mathbf{v} \mathbf{x} \mathbf{B})$	$(\eta \nabla \times \mathbf{B})$
Lorentz force density	$\mathbf{J}\times \mathbf{B}$	
Ampere's Law	$\mathbf{J}=rac{1}{\mu}\mathbf{ abla}oldsymbol{ imes}\mathbf{B}$	
Ohmic heating	$\frac{1}{\sigma}\mathbf{J}^2$	
EM energy flux (Poynting F	Flux) $\frac{1}{\mu}\mathbf{E} \times \mathbf{B}$	
Ohm's law	$\mathbf{E} = rac{1}{\sigma} \mathbf{J} - \mathbf{v} imes \mathbf{B}$	i

A new simulation:

Closely orbiting binary system (e.g., pre-Type Ia SN)

Simulate the interior dynamics of both stars nuclear reactions thermal and compositional convection magnetic field generation rotational and tidal forces

while simulating the exterior interactions between the stars self-gravity mass transfer radiative transfer magnetic interactions

To investigate how magnetic forces and heating affect fluid flow both within the stellar interiors and between the stars.

Codes(?)

MAESTRO:

low Mach number (v << sound speed) for interiors of the stars

CASTRO:

fully compressible with radiative transfer for exterior region and stellar surface layers

Both with magnetic fields.

Couple these?

two MAESTRO "stars" embedded in CASTRO "space" (?) Or start the stellar simulations without interactions using MAESTRO and then continue the entire simulation using CASTRO (?)

Suggestions?