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Heterogeneous computing: using different types of 
processors to work together on a problem 

  Why use heterogeneous computing architectures?  

  What programming challenges do they bring?  

  How does MC transport fit with heterogeneous computing?    

  Our experience adapting Implicit Monte Carlo transport to 
Roadrunner 
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We are living in one of the most disruptive periods in 
computing history. 

  Three “walls” simultaneously blocked progress in CPU performance 
•  power, memory,  and instruction width  
•  remaining avenue: core count 

  New design thinking is emerging from major manufacturers 
•  Cell processor (Sony-Toshiba-IBM), Larrabee (Intel) 

  Graphics Processing Units (GPU) are moving toward broader targets  
•  floating point performance approaching TFlops (double precision) 
•  vendors opening up: 

–  providing specs, new API’s (OpenCL), hardware support for programming 

  Extreme scale computing is driving a search for efficiency in 
hardware and better software models 
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Why use a heterogeneous architecture? 

  Different workloads suit different processor types  
•  many simple, in-order cores maximize parallel throughput (Cell 

SPE, Larrabee, Blue Gene, GPU) 
•  fewer complex, out-of-order cores maximize sequential, single-

thread performance (Opteron, Nehalem, Power7)  

  Amdahl’s law: parallelism is limited by sequential parts of code 

  Heterogeneous strategy: get higher performance and efficiency by 
mixing core types 

  Cost: code complexity  

  Instances of heterogeneous computers: 
•  Roadrunner: Cell processors accelerate ~50 TF cluster to 1 PF 
•  ORNL projected: 10 PF-ish cluster accelerated by “Fermi” GPUs    
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What do heterogeneous architectures look like? 

  “Host” computer with an attached “accelerator” 

  Accelerator examples: Cell processor, GPU, FPGA 

  Moving toward single-chip architectures 

Host (CPU) Accelerator
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Accelerator characteristics introduce programming 
challenges 

  large scale parallelism 

  memory space disjoint from host 

  complex memory hierarchies 

  various hardware favoring different programming flavors 
•  example: Single Instruction Multiple Data (SIMD, aka vector) 
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Milagro Implicit Monte Carlo code overview 

  Fleck & Cummings time discretization 

  object-oriented, generic C++: 
•  templated on mesh type, freq type, 

particle type 

  transports particles 3D, meshes 
articulated in 1,2,3D 

  multigroup frequency treatment 

  supports AMR 

  two distributed parallel modes: mesh 
replicated, decomposed  

  Wedgehog: Fortran callable interface 
library 

Milagro Wedgehog 

ClubIMC 

draco 

vendor libs 
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bdy xing

escape

Monte Carlo transport characteristics 

  MC transport tracks independent particles 
through mesh, tallies interactions with 
material in linearized, operator-split time 
step 

  accelerator benefits: 
•  independent particles: lots of thread-

level data parallelism (large scale 
parallelism)  

  accelerator challenges 
•  random physical pathsrandom execution 

paths: hard to vectorize 
•  randomly access mesh & material data 

sets: too large for fastest memories 
•  branch-heavy code:  weak or no branch 

prediction 
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Example of transport on heterogeneous architecture:  
Implicit Monte Carlo transport for Roadrunner  

  Roadrunner supercomputer: 
•  #1 on Top500 for 1.5 years  
•  first to sustained petaflop 
•  also very efficient— #3 on Green500  
•  heterogeneous architecture 

–  Opteron CPUs + FP-intensive Cell accelerators 
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An app programmer’s view of Roadrunner hybrid node: 
one Opteron + one Cell 
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RAM Opteron
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Element Interconnect Bus 

SPE SPE SPE

SPE SPE SPE

SPE: “Synergistic 
Processing Element”
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Roadrunner gives us a jump on advanced architectures 

  hierarchical concurrency on many cores and threads 
•  how to partition and control programs over hybrid resources? 

  complex memory hierarchies  
•  With RR, one must program the data motion (both weakness & strength)  

  vectors are back  
•  128b now, 256-512b soon 
•  much wider on GPUs (sort of—”SIMT” instead of SIMD) 

  simple core architectures 
•  little hardware tolerance for mediocre programming 
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Avoid branches by computing both legs, then masking 
a simple example 

3.14159265359 5.43656365918

for i in (0,1): 
  if a[i] > b[i]: 
    c[i] = a[i] 
  else: 
    c[i] = b[i] 

6.28318530718 2.71828182846

a

b

00000…0000000 1111111…1111111cmpgt(a,b) produces mask   

(a AND mask) OR (b AND ~mask) produces c:   

6.28318530718 5.43656365918
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A few ideas enable heterogeneous decomposition 

  Use streams, proxies to decouple particle generation from transport 
•  these now happen concurrently 

Boss Proxy

Old Census

Source

Domain
Commun.

Particle Xporter
x 8Input Stream Worker Proxy

Boss ProxyWorker ProxyOutput StreamNew Cen.

Domain
Comm.

Process
boundary
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A hybrid time step:  
who does what in each phase of a time step  

Opteron:  host PPE: manager SPE:  worker 

initialize   signal Cell to begin time step 

  compute mesh, opacity 

  send mesh, opacity to Cell 

  receive mesh/opacity 

  start SPE threads 

  wait 

transport   generate particles, send to 
PPE 

  recover spent particles from 
PPE, retire them (kill, census) 

  synchronize particle I/
O between host & 
workers 

  load particles, mesh, 
opacity, tally data 
  transport particles 
    -- refresh mesh, tally 
       opacity data 

  store particles, tallies 

finalize   signal Cell  

  wait for Tally finished signal 

  recover Tally, update 
material state 

  join SPE threads 

  merge thread-private 
tallies 

  signal host 

  idle 
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Test problem “double bend” 
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Future directions 

  Revive Vector Monte Carlo transport for wider vector machines 

  Continue to evaluate emerging hardware architectures 

  Research programming languages, new programming paradigms 
•  parallel Haskell 
•  domain-specific languages  
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Applied Computer Science group 
leading computational science onto novel computing architectures  

  Four mutually-supporting teams: 
•  algorithm+architecture co-design 

–  jointly design machines and architectures   
•  collaborative development 

–  teach production code teams to design and code for new architectures   
•  programming models and languages 

–  develop tools and domain-specific languages to ease architecture migration 
•  data science at scale 

–  large scale data-mining and data-intensive problems  

  Interdisciplinary group: computer scientists, physicists, engineers, 
applied mathematicians 

  Major goal: train students & postdocs!  
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Backup slides 
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MC particles follow different execution paths 
this is difficult to vectorize 

p1

scatter

boundary

scatter

absorb

p2

scatter

cutoff

absorb

p3

boundary

scatter

scatter

escape

On the Cell SPE, we used
scalar code written with 
vector intrinsics.


