MAESTRO: Latest Developments

Andy Nonaka

Lawrence Berkeley National Laboratory SciDAC Computational Astrophysics Consortium Meeting May 19, 2010

MAESTRO: Latest Developments

Collaborators

- LBNL Center for Computational Sciences and Engineering
 - Ann Almgren
 - John Bell
 - Mike Lijewski
 - Candace Gilet
- Stony Brook University Dept. of Physics and Astronomy
 - Mike Zingale
 - Chris Malone

- There are a number of problems that are characterized by long-time integration of subsonic flow.
 - Not well-suited for CASTRO
- Motivating examples
 - Type Ia supernovae, convection preceding ignition
 - Type I X-ray bursts, convection preceding outburst
 - Convection in massive stars, oxygen shell burning
 - Classical novae, convection preceding outburst

Type la Supernovae

- Last few hours of convection preceding ignition
- Model the entire star in Cartesian geometry
 - Capture full-star dynamics
 - Avoid a singularity at the center of the star

- Highly stratified base state pressure and density
 - Atmosphere expands over time
- We would like to use adaptive mesh refinement (AMR) to focus our computational efforts near the core.
 - Burning drives convection and expansion.
 - We expect ignition to occur near the center of the star.

Type I X-Ray Bursts

- Convection preceding outburst
- Model the surface of the star
- Highly stratified base state expands over time
- We would like to use AMR to focus computational resources near the surface.
 - Burning drives convection and expansion.
 - Fully resolved 3D simulations are infeasible without AMR.

MAESTRO Algorithm Features

- Low Mach number formulation allows for long-time integration of highly subsonic flow
- Time-dependent base state allows for atmospheric expansion
- Retain local compressibility effects (heating, reactions, thermal diffusion)
- General EOS
- General reaction network
- Coordinate systems: 1D Cartesian and spherical, 2D and 3D Cartesian
- AMR (no subcycling in time)

MAESTRO Software Features

- Fortran90
 - BoxLib infrastructure
- Massively parallel using hybrid MPI / OpenMP
 - Scales to 50,000 cores
- Visualization
 - Vislt, amrvis
- Compatible with CASTRO
 - Plotfiles and checkpoint files share the same AMR BoxLib infrastructure
 - Same EOS and reaction network

$$\frac{\partial(\rho X_k)}{\partial t} = -\nabla \cdot (\rho X_k \mathbf{U}) + \rho \dot{\omega}_k$$

$$\frac{\partial(\rho \mathbf{U})}{\partial t} = -\nabla \cdot (\rho \mathbf{U} \mathbf{U}) - (\rho - \rho_0) \mathbf{g} - \nabla \pi$$

$$\frac{\partial(\rho h)}{\partial t} = -\nabla \cdot (\rho h \mathbf{U}) + \frac{D p_0}{D t} + \rho H_{\text{nuc}} + \rho H_{\text{ext}} + \nabla \cdot \kappa \nabla T$$

$$\nabla \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

- Low Mach number equation set
 - Contains no acoustic waves.
 - Appropriate for flows where the Mach number is small (fluid velocity is small compared to the sound speed). Does not enforce that the Mach number is small.
- Time step constrained by the fluid speed, not the sound speed.
 - Time step a factor of $\sim 1/M$ larger, (Mach number M = U/c)
 - Allows for long-time integration

$$\frac{\partial(\rho X_k)}{\partial t} = -\nabla \cdot (\rho X_k \mathbf{U}) + \rho \dot{\omega}_k$$

$$\frac{\partial(\rho \mathbf{U})}{\partial t} = -\nabla \cdot (\rho \mathbf{U} \mathbf{U}) - (\rho + \rho_0) \mathbf{g} - \nabla \pi$$

$$\frac{\partial(\rho h)}{\partial t} = -\nabla \cdot (\rho h \mathbf{U}) + \frac{I \rho_0}{Dt} + \rho H_{\text{nuc}} + \rho H_{\text{ext}} + \nabla \cdot \kappa \nabla T$$

$$\nabla \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

- One-dimensional base state density and pressure:
 - Represent the "average" state of the star as a function of radius
 - Constrained by the equation of hydrostatic equilibrium

$$\nabla p_0(r,t) = -\rho_0(r,t)g(r,t)$$

Highly stratified and time-dependent

$$\frac{\partial(\rho X_k)}{\partial t} = -\nabla \cdot (\rho X_k \mathbf{U}) + \rho \dot{\omega}_k$$

$$\frac{\partial(\rho \mathbf{U})}{\partial t} = -\nabla \cdot (\rho \mathbf{U} \mathbf{U}) - (\rho - \rho_0) \mathbf{g} - \nabla \pi$$

$$\frac{\partial(\rho h)}{\partial t} = -\nabla \cdot (\rho h \mathbf{U}) + \frac{Dp_0}{Dt} + \rho H_{\text{nuc}} + \rho H_{\text{ext}} + \nabla \cdot \kappa \nabla T$$

$$\nabla \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

Dynamic pressure represents perturbations from the background pressure, i.e.,

$$p(\mathbf{x},t) = p_0(r,t) + \pi(\mathbf{x},t); \quad \pi/p_0 = \mathcal{O}(M^2)$$

• Visually, here is how the background state is related to the full state:

- Note that for spherical problems, there is no direct alignment between the 1D background state array and the full state.
 - Requires advanced interpolation stencils

$$\frac{\partial(\rho X_k)}{\partial t} = -\nabla \cdot (\rho X_k \mathbf{U}) + \rho \dot{\omega}_k$$

$$\frac{\partial(\rho \mathbf{U})}{\partial t} = -\nabla \cdot (\rho \mathbf{U} \mathbf{U}) - (\rho - \rho_0) \mathbf{g} - \nabla \pi$$

$$\frac{\partial(\rho h)}{\partial t} = -\nabla \cdot (\rho h \mathbf{U}) + \frac{I \rho_0}{D t} + \rho H_{\text{nuc}} + \rho H_{\text{ext}} + \nabla \cdot \kappa \nabla T$$

$$\mathbf{V} \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

- Conservation of mass and momentum are exact no approximations.
- Base state pressure is used in the enthalpy equation and to constrain the thermodynamics.
- An elliptic constraint on velocity represents instantaneous acoustic equilibration.

Acoustic Equilibration

- Plot of Mach number for a set of reacting, rising bubbles in a white dwarf environment.
 - Compressible (above)
 - Low Mach (below)

• Elliptic constraint captures effects of background stratification....

$$\nabla \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

• Elliptic constraint captures effects of background stratification....

$$\nabla \cdot (\beta_0 \mathbf{U}) = S + \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

...while also capturing local compressibility effects:

compositional changes

$$S = -\sigma \sum_{k} (\xi_{k} + q_{k}) \dot{\omega}_{k} + \frac{1}{\rho p_{\rho}} \sum_{k} p_{X_{k}} \dot{\omega}_{k} + \frac{\sigma}{\rho} \nabla \cdot \kappa \nabla T$$
reaction heating thermal diffusion

Numerical Approach

- Fractional step scheme
 - Unsplit PPM integrator for hydrodynamics
 - Strang-splitting for reaction, heating, and thermal diffusion terms
 - Multigrid for elliptic solve and pressure update

$$\frac{\partial(\rho X_k)}{\partial t} = -\nabla \cdot (\rho X_k \mathbf{U}) + \rho \dot{\omega}_k$$

$$\frac{\partial(\rho \mathbf{U})}{\partial t} = -\nabla \cdot (\rho \mathbf{U} \mathbf{U}) - (\rho - \rho_0) \mathbf{g} - \nabla \pi$$

$$\frac{\partial(\rho h)}{\partial t} = -\nabla \cdot (\rho h \mathbf{U}) + \frac{D p_0}{D t} + \rho H_{\text{nuc}} + \rho H_{\text{ext}} + \nabla \cdot \kappa \nabla T$$

$$\nabla \cdot (\beta_0 \mathbf{U}) = S - \frac{1}{\overline{\Gamma_1} p_0} \frac{\partial p_0}{\partial t}$$

Parallel Performance

- We have recently adopted a hybrid programming approach.
 - MPI with OpenMP
 - Code scales to 50,000 processors

Strong Scaling Behavior of 768^3 MAESTRO Scientific Production Runs on jaguarpf.ccs.ornl.gov

Validation

- AMR tracking a hot bubble in white dwarf environment
 - Second-order accurate

Expansion of a full star subjected to external heating at the core
 3D MAESTRO, 1D MAESTRO, and 1D CASTRO compare well

Full-Star Simulation

- Preview of results from Type Ia ignition study (more in Zingale's talk)
 - Tracking temperature of hot spot as a function of time.
 - No AMR

Verification: Full-Star AMR

• Then we refine the innermost ~10% of the star.

Verification: Full-Star AMR

• Zoom-in of temperature plot after adding refinement.

MAESTRO / CASTRO Transition

- Study the effects of using a MAESTRO dataset to initialize a CASTRO simulation
 - Different initialization algorithms
 - Mach number dependency
 - EOS dependency

- Test problem description
 - Gamma-law gas, terrestrial conditions
 - Subsonic inflow jet with lower density

CASTRO with this profile

initializing with $e = e(\rho, p_0)$

CASTRO pressure after initializing with $e = e(\rho, p_0 + \pi)$

References

- Theoretical and algorithmic developments:
 - Almgren et al., ApJ 637, 2006 (hydrodynamics)
 - Almgren et al., ApJ 649, 2006 (heating)
 - Almgren et al., ApJ 684, 2008 (reactions)
 - Zingale et al., ApJ 704, 2009 (full-star problems)
 - Nonaka et al., ApJS 188, 2010 (time-dependent base state w/AMR)
- Current studies in progress:
 - Type Ia supernovae, convection preceding ignition (Zingale)
 - Type I X-ray bursts, convection preceding outburst (Malone)
 - Convection in massive stars, oxygen shell burning (Gilet)
 - Classical novae, convection preceding outburst (Brendan Krueger, SBU)
 - Type Ia supernovae, post ignition dynamics (Almgren, Bell, Zingale)