"Present and Future Transient/ Supernovae Studies in the Infrared"

Josh Bloom (UC Berkeley)

SciDAC'10, SLAC, 20 May 2010

"Present and Future Transient/ Supernovae Studies in the Infrared"

Exploiting the Transient IR Sky

Josh Bloom (UC Berkeley)

SciDAC'10, SLAC, 20 May 2010

Overview

- Observational Developments
 - Expanding Zoo of (IR) Transients
 - IR Cosmography Work (Ia; IIP)

Overview

- Observational Developments
 - Expanding Zoo of (IR) Transients
 - IR Cosmography Work (Ia; IIP)
- Synoptic All-Sky Infrared Imaging Survey (SASIR)

Overview

- Observational Developments
 - Expanding Zoo of (IR) Transients
 - IR Cosmography Work (Ia; IIP)
- Synoptic All-Sky Infrared Imaging Survey (SASIR)

Coupling to New Theory

Peculiar Red Extragalactic Events

 $\frac{NGC300 \text{ OT:}}{R - K \sim 4 \rightarrow 10 \text{ mag}}$ also, M85-OT, "SN" 2005S, PTF10fqs

progenitors appear to be heavily obscured

progenitor < 20 M⊙ spectra similar to IIn

Bond+09

Note: all found with <1m telescopes in the optical

Peculiar Red Extragalactic Events

Botticella+10

<u>R Peak: -12 to -14 mag</u>

Models:

electron-capture
SNe of dustenshrouded AGB
star?
binary accretion
(Eta Car-like)
extreme LBV?
- RSG → BSG transition

Prieto et al. 2008b; Thompson et al. 2008; Botticella et al. 2009, Gogarten+09, Smith et al. 2009

Cool/Red Supergiant Eruptive Outbursts

M/L-type supergiant (M_R = -10 mag; ~2000 K) w/ B-type companion?

stellar collisions?
planet cannibalism?
thermonuclear shell event?
accretion-induced thermal event?

Tylenda, Soker & Szczerba, 2005; Retter & Marom, 2003; van Loon et al., 2004; Lawlor, 2005

Cool/Red Supergiant Eruptive Outbursts

M/L-type supergiant (M_R = -10 mag; ~2000 K) w/ B-type companion?

stellar collisions?planet cannibalism?

- thermonuclear shell event?
- accretion-induced thermal event?

Tylenda, Soker & Szczerba, 2005; Retter & Marom, 2003; van Loon et al., 2004; Lawlor, 2005 Galactic extension of luminous red novae

(e.g. M85OT, NGN300OT, PTF10fqs)?

SN IR Cosmography

Kasen 06

PAIRITEL SUPERNOVA P 2004-05 mosaics on disk						ROJECT DATA CENSUS 2005-06 mosaics on disk					2006-07 mosaics on disk						Last Updated 10/17/07 2007-08 mosaics on disk							Only includes data with at least 4 epochs											
SN.ID	Name	SNT EMP . ID	J	Н	к	Tem p	SN.I D	Name	SNT EMP . ID	J	н	к	Tem p	SN.I D	Name	SNT EMP . ID	J	Н	ĸ	Temp	SN.I D	Name	SNT EMP . ID	J	н	к	Tem p		04- 05	05- 06	06- 07	07- 08	Tot		
147	n4012		16	16	16		18	05el	24	38	40	40	4	53	06gr	59	5	5	5	2	79	07fb	SN	14	14	15	SN	la	9	20	12	6	47	64%	
148	05m		8	8	8		21	05ek	21	23	23	23	1-2	54	06fo	47	26	25	26	1	81	07gr	SN	15	17	17	SN	lb/lc	5	6	9	1	21	28%	
1	05a	•	16	17	17	0.*	24	05eo	22	31	31	20	6	55	06is	48	52	52	52	2	82	07hj	SN	7	7	7	SN	П	3	0	2	0	5	7%	
##	m	9	2	3	4	31	25	05M00	6 <mark>8</mark>	40	40	40	1*	56	06jc	62	91	91	91	active	83	07if	SN	9	9	9	SN	???	0	1	0	0	1	1%	
2			3	3	3		26	05eq	25	27	28	27	<mark>3-4</mark>	57	06lc	54	22	22	22	1 up	84	07hu	SN	1	1	1	SN		17	27	23	7	74	100%	
##	04gq	2	8	8	8	4- 5*	27	05eu	37	35	35	35	5	58	06ld	55	19	19	19	1 up	87	07ir	SN	10	10	9	SN	Temp.	15	27	10	0	52		
##			1	1	1	J	28	05hf	34	31	31	31	8-9	59	06le	49	50	49	50	4	93	07kk	SN	7	6	7	SN	% temp.	88%	100%	43%	0%	70%		
3	0.4 1		25	25	25	0.+	29	05hg	6	40	40	34	5-6	60	06lf	50	47	48	47	2	95	07le	SN	2	2	2	SN								
##	04gt	4	0	0	0	31	30	05hk	36	30	30	30	5	61	06mc	SN	21	21	22	Nov								SN.II	D - se	ome	SNe	have	mul	ltiple	
4		_	45	45	45	4 4	31	05iq	38	16	16	16	5	62	07C	56	24	24	23	Jan								ID #s	S						
##	04дк	5	° 71	68	72	1^	32	05ke	26 36 35 36 6 63 07D 57 3 3 4 up-Mar											Name - sn name (<i>06ai</i> =															
5	05	0500 10	16	19	19		33	05kl	1 30 25 24 22 4 64 071 58 30 30 28 Dec										grb060218)																
##	05a0 10	10	1	1	1	11	35	05ls	28	27	28	29	2	65	07S	SN	23	23	23	Oct/Nov								SNTEMP.ID - different from							
6	05ak	11	35	36	36	11	36	05mf	7	13	13	11	5	66	07aa	51	28	29	28	Dec								SN.II	D						
8	05ay	13	12	12	12	5*	37	05mc	: 29	48	48	47	10	67	07af	52	36	37	37	Jan								mos	aics	on d	isk #	f of J	,H,K		
10	05bl	14	20	20	20	5*	38	05na	40	#	#	#	1	68	07ag	SN	14	13	14	Oct/Nov								mosaics rsynced to CfA, bad images included							
11	05bf	3	33	33	33	5	39	06D	32	30	30	30	4	69	07av	SN	10	10	9	Oct/Nov								5							
12	05bo	15	17	17	17	4*	40	06E	33	33	33	33	6	70	07bj	53	41	41	39	1 Feb								(exc	lude	s un	redu	iced	dat	а	
13	05az	: 16	22	22	22	5*	41	06N	31	31	31	31	6-7	72	07bz	SN	15	15	15	Dec								òn ly	/ra)						
14	05cc	: 17	26	26	26	10	42	06X	42	77	76	78	3	73	07ca	SN	14	14	14	Dec/Jan								Tem	p: ind	clude	s bot	th go	od a	nd	
15	05cf	18	26	27	27	13	43	06ac	35	41	42	42	<mark>4~/5</mark> \$	74	07ce	SN	4	4	4	Nov								to Cf	quaii A	ly lei	пріа	es is	synce	ea	
16	05ch	19	12	12	12	6	44	06aj	39	8	8	8	3	76	07co	60	11	11	11	1								*1 =	1 hr	temp	late	(the	rest	are	
17	05cs	20	7	7	7	3	45	06ax	43	18	18	18	1-2	77	07cq	61	5	5	6	2								30 m	in)	-					
SN Type Color Codes							46	06az	44	24	24 19	24 1 0	4		_									_				\$ = la SN h	ate ti nas fa	me ir aded	nage can	s wh	ere t è as	the	
						40	0600	41	5	5	5	2				P	2	7	R	Т	FI						temp	lates	;						
							49 50	06cp	45 46	5 4	5 4	5 4	6 4	-	PETERS AUTOMATED									# some with bad K band, but at least 1 with JHK all acceptable											
														-	INF	₿₽	₿Ę	₽.	Мł	<u>Ĵ</u> Ĉĺĥ	G.	IE I	ŝ) Sol	Έ				(`	2()()7		

Ia SNe

10-15% rms luminosity

5% distance errors in the Hubble diagram

Friedman, JSB+08; Mandel+09; also Krisciunas+04

IIP SNe

- Scatter of ~ 10% in distance using optical bands.
- Mystery best $R_V \sim 2$.

IIP SNe

Maguire+10 find a factor of 2 improvement in IR.
> 15 SN II-P light curves with PAIRITEL.

Kisklak, Miller, Poznanski...10

Dust Obscured SNe

- Which SNe are we missing in the optical because of dust?
- Are there intrinsically red SNe out there?
- A better mapping of progenitor star to SN type.
- Better constraining SN cosmic rates.

PRC97-17 • ST Scl OPO • June 9, 1997 R. Thompson (University of Arizona), N. Scoville (California Institute of Technology) and NASA

Characterizing the IR Transient Sky

Ramirez-Ruiz, Kasen; also Heger, today

Characterizing the IR Transient Sky

relative to optical: shallow & small

Scientific, Educational & Technological Partnership Across Borders

http://sasir.org

SASIR, in a Nutshell

The SPMT 6.5 meter telescope (Magellan inspired)

• Filters: Υ, Υ, H, K (3 dichroics) • **Detectors:** $124 \ 2k \times 2k$ IR arrays • $\sim 1.05^{\circ}$ diameter field of view \Rightarrow 2 sq. deg. on-sky • autonomous/robotic surveying • **Survey:** cover entire sky in ~2-3 months; 4-5 year survey • "shallow" (~2.5 π ; 6-12 visits) • "medium" (0.5 π ; ~200 visits) • "deep" (~1000 sq deg; 10³+ visits) surveys

SASIR, in a Nutshell

The SPMT 6.5 meter telescope (Magellan inspired)

• Filters: Υ, Υ, H, K (3 dichroics) • **Detectors:** $124 \ 2k \times 2k$ IR arrays • $\sim 1.05^{\circ}$ diameter field of view \Rightarrow 2 sq. deg. on-sky • autonomous/robotic surveying • **Survey:** cover entire sky in ~2-3 months; 4-5 year survey • "shallow" (~2.5 π ; 6-12 visits) • "medium" (0.5 π ; ~200 visits) • "deep" (~1000 sq deg; 10³+ visits) surveys

New Phase Space: Aperture + wavebands + Field of View + Time

SASIR/SPMT: in progress

Comparison to Other Surveys

étendue-couleur[©] (m² deg² × number of simultaneous bands)

Comparison to Other Surveys

SASIR Impact Across Astrophysics

- Unveiling the Lowest Temperature Neighbors: finding the local brown dwarf & Y dwarf population (candidates for exoplanet imaging)
- Probing the Epoch of Reionization w/ Quasars
- Multi-messenger Probe:

Gravity Wave & Particle Counterparts - IR cosmology/distance ladder: supernovae, RR Lyrae, Mira, etc.

SASIR Impact Across Astrophysics

- Unveiling the Lowest Temperature Neighbors: finding the local brown dwarf & Y dwarf population (candidates for exoplanet imaging)
- Probing the Epoch of Reionization w/ Quasars
- Multi-messenger Probe:

Gravity Wave & Particle Counterparts

- IR cosmology/distance ladder: supernovae, RR Lyrae, Mira, etc.
 - Large Millimeter Telescope (LMT)
 discovery engine for GTC, Keck, GSMTs, JDEM
 high-resolution dust maps (esp. in the Galactic Plane)
 adaptive optics grid

- photo-z improvement over optical-only (e.g. BAO)

> dozen Astro2010 Science Whitepapers

Synergies

SASIR Impact Across Astrophysics

- Unveiling the Lowest Temperature Neighbors: finding the local brown dwarf & Y dwarf population (candidates for exoplanet imaging)
- Probing the Epoch of Reionization w/ Quasars
- Multi-messenger Probe:

Gravity Wave & Particle Counterparts - IR cosmology/distance ladder: supernovae, RR Lyrae, Mira, etc.

- Large Millimeter Telescope (LMT)
 discovery engine for GTC, Keck, GSMTs, JDEM
 high-resolution dust maps (esp. in the Galactic Plane
 adaptive optics grid
- photo-z improvement over optical-only (e.g. BAO

> dozen Astro2010 Science Whitepapers

Improved photometric redshift errors

19

Supernovae

0.8

Rec

0 1

0'5

D. Poznanski

Gravitational Wave & Neutrino Follow-up

E&M connection to the next generation observatories

NS-NS inspiral Volume

Advanced LIGO Rate: 40/yr but localization accuracy ~10 deg² radius

SASIR: unique FOV + aperture, well-suited to rapid follow-up

> advanced LIGO (300 Mpc)

LIGO (30 Mpc)

MBH-MBH mergers: Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim deg^2$ GW localization problem

> Schnittman-& Krolik 08 Haiman+08

MBH-MBH mergers: Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim deg^2$ GW localization problem

> Schnittman-& Krolik 08 Haiman+08

MBH-MBH mergers: Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim deg^2$ GW localization problem

GW chirp gives d_L to 1% (@ z=1) + host redshift: new precision cosmology tool

> Schnittman-& Krolik 08 Haiman+08

New progenitor populations that are IR rich

Very promising utility for IR SNe as cosmographic tool (IR only glimpe to SNe from first stars...) <u>Heger, Fryer, ... today</u>

Important role of theory in motivating science of new IR Surveys (e.g. SASIR)

As Proposed:

Design phases:

50/50 US/Mexico Federal Funding (90%) Institutional & Private (10%)

Construction phases:

Significant private funding (~70%), Institutional (5%), Mexican Federal (25%), **US Federal (0%)** US partners responsible for camera (\$50M) Mexico responsible for telescope & observatory

Survey phase:

50/50 US/Mexico Federal Funding (90%) Institutional & Private (10%)