"Present and Future Transient/

 Supernovae Studies in the Infrared ${ }^{p s}$Fosh Bloom (UC Berkeley)

"Present and Future Transient/

 Supernovae Studies in the Infrared"Exploiting the Transient IR Sky
Fosh Bloom (UC Berkeley)

Overview

Overview

- Observational Developments
- Expanding Zoo of (IR) Transients
- IR Cosmography Work (Ia; IIP)

Overview

- Observational Developments
- Expanding Zoo of (IR) Transients
- IR Cosmography Work (Ia; IIP)
> Synoptic All-Sky Infrared Imaging Survey (SASIR)

Overview

- Observational Developments
- Expanding Zoo of (IR) Transients
- IR Cosmography Work (Ia; IIP)
- Synoptic All-Sky Infrared Imaging Survey (SASIR)
- Coupling to New Theory

Peculiar Red Extragalactic Events

NGC300 OT:
$R-K \sim 4 \rightarrow 10 \mathrm{mag}$
also, M85-OT, "SN" 2005S, PTF10fqs
progenitors appear to be heavily obscured
progenitor < 20 Mo spectra similar to IIn

Bond+09

Note: all found with <1m telescopes in the optical

Peculiar Red Extragalactic Events

Botticella+10

R Peak: - 12 to -14 mag

Models:

- electron-capture SNe of dustenshrouded AGB star?
- binary accretion
(Eta Car-like)
- extreme LBV?
- RSG \rightarrow BSG transition

Prieto et al. 2008b; Thompson et al. 2008;
Botticella et al. 2009, Gogarten+09, Smith et al. 2009

Cool/Red Supergiant Eruptive Outbursts

M/L-type supergiant
$\left(\mathrm{M}_{\mathrm{R}}=-10 \mathrm{mag} ; \sim 2000 \mathrm{~K}\right)$
w/ B-type companion?

- stellar collisions?
- planet cannibalism?
- thermonuclear shell event?
- accretion-induced thermal event?
- ...

Tylenda, Soker © Szczerba, 2005; Retter © Marom, 2003; van Loon et al., 2004; Lawlor, 2005

V838 Mon

Cool/Red Supergiant Eruptive Outbursts

M/L-type supergiant
$\left(M_{R}=-10 \mathrm{mag} ; \sim 2000 \mathrm{~K}\right)$
w/ B-type companion?

- stellar collisions?
- planet cannibalism?
- thermonuclear shell event?
- accretion-induced thermal event?
- ...

Tylenda, Soker ๕ Szczerba, 2005; Retter ๕ Marom, 2003; van Loon et al., 2004; Lawlor, 2005
Galactic extension of luminous red novae (e.g. M85OT, NGN300OT, PTF10fqs)?

V838 Mon

SN IR Cosmography

Kasen 06

PAIRITEL SUPERNOVA PROJECT DATA CENSUS

SN Type Color Codes

la Ib/lc II ???

Last Updated 10/17/07
Only includes data with at least 4 epochs
2007-08 mosaics on disk

SN.	Name	$\begin{aligned} & \text { SNT } \\ & \text { EMP } \\ & .10 \end{aligned}$	J	H	K	${ }_{\text {p }}^{\text {Tem }}$				$\begin{gathered} 06- \\ 07 \end{gathered}$		Tot	
79	07fb	SN	14	14	15	SN	la	9	20	12	6	47	64\%
81	07gr	SN	15	17	17	SN	Ib/lc	5	6	9	1	21	28\%
82	07hj	SN	7	7	7	SN	II	3	0	2	0	5	7\%
83	07if	SN	9	9	9	SN	???	0	1	0	0	1	1\%
84	07hu	SN	1	1	1	SN		17	27	23	7	74	100\%
87	07ir	SN	10	10	9	SN	Temp.	15	27	10	0	52	
93	07kk	SN	7	6	7	SN	\% temp.	88\%	100\%	43\%	0\%	70\%	
95	07le	SN	2	2	2	SN							
							SN.ID - some SNe have multiple ID \#s						

Name - sn name (06aj = grb060218)

SNTEMP.ID - different from SN.ID
mosaics on disk \# of J,H,K mosaics rsynced to CfA, bad images included
(excludes unreduced data on lyra)
Temp: includes both good and
bad quality templates rsynced bad quality templates rsynced to CfA
*1 $=1 \mathrm{hr}$ template (the rest are 30 min)
\$ = late time images where the SN has faded can serve as templates
\# some with bad K band, but at least 1 with JHK all acceptable

c. 2007

Ia SNe

10-15\% rms luminosity
5% distance errors in the Hubble diagram

Friedman, 7 SB +08 ; Mandel +09 ; also Krisciumas +04

IIP SNe

- Scatter of $\sim 10 \%$ in distance using optical bands.
- Mystery best $R_{V} \sim 2$.

IIP SNe

- Maguire+10 find a factor of 2 improvement in IR.
- > 15 SN II-P light curves with PAIRITEL.

Kisklak, Miller, Poznanski... 10

Dust Obscured SNe

- Which SNe are we missing in the optical because of dust?
- Are there intrinsically red SNe out there?
- A better mapping of progenitor star to SN type.
- Better constraining SN cosmic rates.

Characterizing the IR Transient Sky

Ramirez-Ruiz, Kasen; also Heger, today

Characterizing the IR Transient Sky

relative to optical: shallow \& small

THE SYNOPTIC•ALL-SKY.INFRARED SURVEY

Universidad Nacional Autónoma de México

飛 THE UNIVERSITY OF ARIZONA

SCIENTIFIC, EdUCATIONAL \& TECHNOLOGICAL PARTNERSHIP ACROSS BORDERS

http://sasir.org

SASIR, in a Nutshell

The SPMT 6.5 meter telescope
(Magellan inspired)

- Fillters: $\mathbb{Y}, \mathcal{F}, H, K$ (3 dichroics)
- Detectors: $1242 \mathrm{k} \times 2 \mathrm{k}$ IR arrays
- $\sim 1.05^{\circ}$ diameter field of view $\rightarrow 2$ sq. deg. on-sky
- autonomous/robotic surveying
- Survey: cover entire sky in ~2-3 months;

4-5 year survey

o"shallow" ($\sim 2.5 \pi ; 6-12$ visits)
o "medium" (0.5π; ~200 visits)

- "deep" (~ 1000 sq deg; $10^{3}+$ visits) surveys

SASIR, in a Nutshell

The SPMT 6.5 meter telescope
(Magellan inspired)

- Fillters: $\mathbb{Y}, \mathcal{F}, H, K$ (3 dichroics)
- Detectors: $1242 \mathrm{k} \times 2 \mathrm{k}$ IR arrays
- $\sim 1.05^{\circ}$ diameter field of view $\rightarrow 2$ sq. deg. on-sky
- autonomous/robotic surveying
- Survey: cover entire sky in ~2-3 months;

4-5 year survey

o"shallow" ($\sim 2.5 \pi ; 6-12$ visits)
o "medium" (0.5π; ~200 visits)

- "deep" (~ 1000 sq deg; $10^{3}+$ visits) surveys

New Phase Space:
Aperture + warebands + Field of View + Time

SASIR/SPMT:

in progress

Comparison to Other Surveys

eit
étendue-couleur ${ }^{\circ}\left(\mathrm{m}^{2} \mathrm{deg}^{2} \times\right.$ number of simultaneous bands)

Comparison to Other Surveys

Mタ^ต|cนฉฉf μ (wiclou)

YL6g (ad' qeR.)

other survey data compiled by D. Stern (JPL)

SASIR Impact Across Astrophysics

- Unveiling the Lowest Temperature Neighbors: finding the local brown dwarf \& Y dwarf population (candidates for exoplanet imaging)
- Probing the Epoch of Reionization w/ Quasars
- Multi-messenger Probe:

Gravity Wave \& Particle Counterparts

- IR cosmology/distance ladder:
supernovae, RR Lyrae, Mira, etc.

SASIR Impact Across Astrophysics

- Unveiling the Lowest Temperature Neighbors: finding the local brown dwarf \& Y dwarf population (candidates for exoplanet imaging)
- Probing the Epoch of Reionization w/ Quasars
- Multi-messenger Probe:

Gravity Wave \& Particle Counterparts

- IR cosmology/distance ladder:
supernovae, RR Lyrac, Mira, etc.
- Large Millimeter Telescope (LMT)
- discovery engine for GTC, Keck, GSMTs, JDEM
- high-resolution dust maps (esp. in the Galactic Plane)
- adaptive optics grid
- photo-z improvement over optical-only (e.g. BAO)
> dozen Astro 2010 Science Whitepapers

SASIR Impact Across Astrophysics

- Unvelling the Lowest Pemperature Neighbors:
- Probing the Epoch of Reionivation w/ Quasars
- Multi-messenger Probe:

Gravity Wave \& Particle Counterparts

- IR cosmology/distance ladder:
supernovae, RR Lyrae, Mira, etc.
- Large Millimeter Telescope (LMT)
- discovery engine for GTC, Keck, GSMTs, JDEM
- high-resolution dust maps (esp. in the Galactic Plane
- adaptive optics grid
- photo-z improvement over optical-only (e.g. BAO)
$>$ dozen Astro 2010 Science Whitepapers

Improved photometric redshift errors

from A. Stanford

Supernovae

B6qau!tf s
D. Poznanski

Gravitational Wave \& Neutrino Follow-up

E\&M connection to the next generation observatories

Advanced LIGO Rate: $40 / \mathrm{yr}$ but localization accuracy $\sim 10 \operatorname{deg}^{2}$ radius

SASIR: unique FOV + aperture, well-suited to rapid follow-up advanced LIGQ (300 Mpc)

MBH-MBH mergers:
Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim \operatorname{deg}^{2}$ GW localization problem

Schnittman-\& Krolik 08
Haiman+08

MBH-MBH mergers:
Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim \operatorname{deg}^{2}$ GW localization problem

Schnittman-\& Krolik 08
Haiman+08

MBH-MBH mergers:
Periodic transients prior to coalescence, infrared afterglows afterwards

EM event discovery (via time variability) breaks the $\sim \operatorname{deg}^{2}$ GW localization problem

GW chirp gives d_{L} to 1% @ $\mathrm{z}=1)+$ host redshift: new precision cosmology tool

Schnittman-\& Krolik 08
Haiman+08

Summary

New progenitor populations that are IR rich

Very promising utility for IR SNe as cosmographic tool (IR only glimpe to SNe from first stars...)

Heger, Fryer, ... today

Important role of theory in motivating science of new IR Surveys (e.g. SASIR)

Funding

As Proposed:

Design phases:
50/50 US/Mexico Federal Funding (90\%)
Institutional \& Private (10%)
Construction phases:
Significant private funding ($\sim 70 \%$), Institutional (5%),
Mexican Federal (25\%), US Federal (0\%)
US partners responsible for camera (\$50M)
Mexico responsible for telescope \& observatory

Survey phase:

50/50 US/Mexico Federal Funding (90\%)
Institutional \& Private (10\%)

