Numerical Simulations of Type la Supernova Explosion

Haitao Ma (UCSC)

Collaborator:

Stan Woosley(UCSC)Ann Almgren(LBNL)John Bell(LBNL)

CASTRO

- Compressible hydrodynamics code
- Eulerian grids with AMR
- Unsplit Godunov Scheme
- Subcycling in time advance
- Parellel code with good scaling up to more than 10,000 processors
- Solve radiation transfer

Explosion Mechanism and Numerical Setup

Explosion Models:

Shock-driven Detonation

Subsonic Deflagration

Deflagration-Detonation Transition (DDT)

Numerical Setup:

- Initial composition 50% C 50% O
- Products depend on fuel density, and NSE is considered
- 10 species carried in the calculation
- Nuclear burning times scale = Thermal diffusion time scale
- Compute gravity as one-dimentional integral
- Make ignition pattern assumptions

1D Sharp-Wheeler Model

3D Models

Different Ignition Pattern

Central ignited Off-Center ignited

Different pre-defined laminar flame speed
v = 50 km/s, 100 km/s, 200 km/s

3D Flame Propagation Central ignited

Flame Speed = 100 km/s.

Initialize inner 100 km as hot ashes with perturbed surface.

4 levels of refinement, and finest cell size is 1 km.

~ 1 Million CPU hours so far, mostly run on 8192 processors.

0.32 s

0 s

0.63 s

0.93 s

Ζ Y X

AMR Criterions :

Flame always has the finest cellsDensity is the other criterionDrop resolution as star expands.

So far (at star time ~ 1 s),

0.53 solar mass iron group elements are produced .

0.03 solar mass intermediate elements are produced.

At different flame speeds

t ~ 0.5 s,

higher flame speed --> larger fire polishing length \rightarrow less structure Any perturbation in the flame surface below fire polishing length will be polished out by burning.

Iron Production

- Probably this run can only give a faint type la.
- A converged answer at different flame speeds?

2D & 3D Flame Propagation Off-center ignited

GCD (Gravitational Confined Detonation) model

- Pre-SN convection could be dipole flow and the WD Ignited on one side of the star
- A small part of star on one side is burned, unable to unbind the star.
- Hot ash sweeps around the star along with fresh fuels, collides on the opposite side, and trigger a detonation.

2D off-center Calculation

Initial spherical bubble has a radius of 20 km, 30 km away from the center

1.43 s1.87 s3.75 sTotally about 0.8 solar mass burned.Finest cell size 1.25 km.

Trigger a later detonation?

At the density of 2*10**7 g/cc, the temperature is higher than 3*10**9 K!

Groups at Chicago and MPA agree on 2D results, but disagree on 3D offcenter study!

Our 3D calculation will have enough resolution to see if there is an inward jet

3D Off-center Calculation

