Host Galaxies of Type Ia Supernovae: Indirect Clues to SN Progenitors

Michael Childress UC Berkeley Nearby Supernova Factory at LBL SciDAC Meeting 2010-05-20

Outline

- Motivation: Standardizing the Standard Candle
- SN la Host Galaxy Studies To-Date
- SNe la from Low-Metallicity Progenitors
- Hostless (?) SNe la

SNfactory Overview

Untargeted wide-field search w/ QUEST camera on Palomar 48-in
Discovered over 1000 SNe, over 600 spectroscopically typed:
396 SNe la discovered by SNf ("demographics" sample)

•185 SNe Ia with well-sampled LCs ("cosmology" sample)

•Followup with SuperNova Integral Field Spectrograph (SNIFS) on University of Hawaii 2.2m (UH88)

•Flux calibrated spectral time series with 2-3 day cadence

•Can synthesize light curves from SN SED in ANY band without need to perform K-corrections

Motivation: Calibrating SNe Ia for Cosmology

- SNe la have raw brightness dispersion of ~ 0.4 mag, correctable w/ light curve parameters to ~0.15 mag
- **SNfactory**: spectral time series may reveal more about cause of dispersion (i.e. what part of SED drives it), or means to correct for it (Bailey et al. 2009)

• The Concern: Is dispersion progenitor-driven?

- The Future: high-volume SN searches and photometric followup at high-redshift
 - Will evolving progenitor environments derail empirical SN Ia calibrations by introducing systematic biases?
- Approach: study SN la environments at low-z for clues

Host Galaxies of SNe Ia - Early Results

- SN la stretch correlates with galaxy mass
 - product of SN progenitor age?
 - correctable* from SN light curve
- SN la rates related to host mass and star-formation rate
 - two distinct progenitor channels? - "A+B" model (Scannapieco & Bildsten 2005)

Some Unsettling Recent Results...

- Cooper et al. (2009) found a lack of SNe la in star-forming galaxies in high-density regions
 - maximum metallicity for "prompt" SNe Ia?
- Kelly et al. (2009) found >2σ dependence of corrected brightness on host galaxy mass
- Sullivan et al. (2010) found corrected brightnesses SNe Ia in low-mass hosts exceeds those in high-mass hosts by 0.08 mag at 4σ

2.0

1.5

1.0

SNfactory's Input...

- SNfactory sample of 185 SN la hosts spans similar mass range of high-z (SNLS)
- Multiband data on hand (from SDSS) for ~1/2 our sample, applied for time to observe remaining 1/2

- Spectroscopically-measured SN la host metallicities scarce (17 total in Hubble Flow)
- SNfactory has 70+ spec. Z's on hand for SNe in our 1st cosmology sample, more proposed to observe in fall

Theoretical SN Ia Progenitor Metallicity Effects

- Timmes, Browns, & Truran 2003
 - metal-rich stars generate more ²²Ne which decreases mass of ⁵⁶Ni produced in SN
 - Howell et al. (2009) with SNLS data and Neill et al. (2009) with low-z data show TBT03 agrees qualitatively with trends in data, but with much scatter
- Kasen et al. (2009) include TBT03 effect in simulation, find it changes slope and zeropoint of stretch-luminosity relation

Theoretical SN Ia Progenitor Metallicity Effects

- Kobayashi & Nomoto (2009) model WD accretion in single-degenerate (SD) channel, find minimum strength of wind (powered by Fe opacity) needed to prevent CE phase
 - predicts low-metallicity inhibition of SNe la
 - matches Galactic chemical enrichment very well
 - produces declining SN la rate at high redshift - important in predicting expected yields of future high-z surveys
 - with low-Z cutoff, reduces concern about SN la evolutionary effects

KN Cutoff - has anyone approached it?

- Cutoff is from deficient Fe opacity at [Fe/H] ≈ -1.1
- Most galaxy abundances in terms of I2+log(O/H)gas
- Conversion requires:
 - solar abundance $12 + \log(O/H)_{\odot} = 8.69$
 - Oxygen enrichment:
 - KN08 (arxiv): assume Milky Way [O/Fe]_{MW} = 0.3
 - KN09 (ApJ): dwarf galaxies may be lower -[O/Fe]_{dwarf} = 0.0
- Two possible values:
 - I2 + log(O/H) = 7.9 (KN08 Galactic enrichment)
 - 12 + log(O/H) = 7.6 (KN09 dwarf enrichment)

KN Cutoff - has anyone approached it?

- Metallicity in star-forming galaxies measured using strong emissionline techniques:
 - Different methods disagree
 - Absolute scale uncertain
- When spectroscopic Z unavailable, most authors use mass-metallicity (MZ) relations (e.g. Tremonti et al. 2004, Lee et al. 2006)
 - MZ relation has intrinsic dispersion of ~0.1 dex at solar O/H, up to 0.3 dex at low Z
 - MZ relation at low Z doesn't appear to line up with higher Z

KN Cutoff - has anyone approached it?

Source	Lowest Z	Spectroscopic / Mass-Based	Method			
Hamuy 2000	8.46	Spec	Lick Indices			
Gallagher 2005	8.49	Spec	Kewley & Dopita 2002			
Gallagher 2008	8.34	Spec	SSP-matching			
Prieto 2008	8.23	Spec	Tremonti 2004 Bayesian Method			
Neill 2009	8.65	Mass	Tremonti 2004 MZ			
KN08 - MW O/Fe 7.9						
Howell 2009	~7.7	Mass	Lee 2006 MZ			
Sullivan 2010	~7.7	Mass	High-z MZ			
SNfactory	~7.7	Mass*	Lee 2006 MZ			
KN09 - Dwarf O/Fe	7.6					

***SNfactory ideal for host spectroscopic metallicities**

How many SNe might we expect below KN cutoff?

- Determine host mass corresponding to cutoff using M-Z relation
- Measure fraction of all stellar mass in galaxies of mass lower than cutoff
- Similarly, measure fraction of cosmic star-formation rate below mass cutoff

Enrichment	M-Z Relation	Cutoff M*	Fraction M*	Fraction SFR
MW	Tremonti 2004	7.46	0.36%	3.37%
[O/Fe] = 0.3	Lee et al. 2006	7.56	0.45%	3.91%
Dwarf	Tremonti 2004	6.84	0.09%	I.33%
[O/Fe] = 0.0	Lee et al. 2006	6.56	0.05%	0.88%

SNfactory Data

- SNfactory hosts extend to low mass - best chance to test KN09 theory
- Extensive host spectroscopy program -38 total nights on Lick, Keck, CTIO, SOAR, 300+ host spectra obtained
- Measure metallicity for star-forming hosts using emission line strengths
- Host masses using deep photometry from SNIFS and LRIS (obtained during spec. target acquisition)

Choosing the right calibration...

- Derive linear conversion
- Convert SN la host R23 metallicities
- Effectively setting $T_e(Z)$ to recalibrate lower branch of R23

- Classical metallicity technique "R23" not calibrated for low-Z
- Strong-line R23 metallicities for low-Z galaxies correlate strongly with "correct" T_e(OIII) metallicities

SNfactory Results

- Final SNfactory host metallicities placed on scale motivated by the most physical metallicity indicator T_e
- Low-Z SNfactory hosts occupy similar region in MZ space as known low-Z samples
- Several SNf hosts lie below the MVVenriched KN08 cutoff
- Only SN2007if lies (slightly) below dwarf-enrichment KN09 cutoff

SNfactory Results

- Final SNfactory host metallicities placed on scale motivated by the most physical metallicity indicator T_e
- Low-Z SNfactory hosts occupy similar region in MZ space as known low-Z samples
- Several SNf hosts lie below the MWenriched KN08 cutoff
- Only SN2007if lies (slightly) below dwarf-enrichment KN09 cutoff
- More galaxies still to be observed (blue dashed lines)

Examples of Ultra-Faint SN la Hosts

SN2007if (a.k.a. SNF20070825-001)

- Super-Chandrasekhar explosion (Scalzo et al. 2010), likely from double-degenerate merger
- Definitively low metallicity host
 - weak OII AND OIII, no NII or SII detected
- Still noisy after I hour on Keck!
- $m_g = 23.1, M_g = -14.5, log(M_*) = 7.19$

"Hostless" SNe la

 Some SNe la had multiple faint host candidates in the vicinity...

"Hostless" SNe la

- Some SNe la had multiple faint host candidates in the vicinity...
- ... which turned out to be foreground stars or highredshift galaxies

WHERE IS THE PARENT STELLAR POPULATION?

Not-so-hostless (?) SNe la

• Some SNe la have only false hosts in the immediate vicinity...

Not-so-hostless (?) SNe la

- Some SNe Ia have only false hosts in the immediate vicinity...
- ... but interacting galaxy clusters at large distances (at the right redshift!)
- Are these ICM SNe Ia? How far out should we look for host associations?

Not-so-hostless (?) SNe la

- Some SNe Ia have only false hosts in the immediate vicinity...
- ... but interacting galaxy clusters at large distances (at the right redshift!)
- Are these ICM SNe Ia? How far out should we look for host associations?

Conclusions

- SN la host studies vital for controlling redshiftdependent systematics
- SNfactory host mass and metallicity range poised to contribute to current host phenomena and explore new ones
- We have observed the lowest directly-measured metallicities for SN Ia host galaxies
- SN2007if host has lowest-Z host if sample, is only host below KN09 cutoff (more evidence for DD?)
- Hostless SNe Ia and SNe Ia in interacting environments pose challenge for host-based luminosity corrections

SNfactory Collaboration

Greg Aldering Mike Childress Hannah Fakhouri Stu Loken Peter Nugent Saul Perlmutter Karl Runge Rollin Thomas

LPNHE Paris

Pierre Antilogus Stephen Bailey Seb Bongard Arnaud Canto Marek Kowalski (Bonn) Reynald Pain

Yale University

Charlie Baltay David Rabinowitz Richard Scalzo

IPNL Lyon

Clement Buton Nicolas Chotard Yannick Copin Emmanuel Gangler Rui Pereira Gerard Smadja Charling Tao (Marseille)

CRAL Lyon Emmanuel Pecontal

Supplemental Slides

Measuring Emission Line Strengths

- Emission line fluxes fit using specialized version of IDL line fitting code from SDSS spectroscopic pipeline
- Simultaneously fit emission line profiles AND stellar continuum
 - vital for accounting for stellar absorption
- Background templates from Bruzual & Charlot 2003 (this talk -Z = 0.004), ages ranges from 5Myr to 11 Gyr

Measuring Host Masses

- Derive mass-to-light ratio from absolute magnitude and color (where available)
- M*/L weak function of Mg, strong function of color
- g-i best single color for constraining M*/L (Gallazzi & Bell 2009)
- Use NYU Value Added Galaxy Catalogue to derive M*/L (and its dispersion) in colormagnitude bins
- Can determine host stellar mass to within 0.2 dex
- Multicolor (ugriz) better, but not by much!

Kauffmann et al. 2003 M*/L

SNfactory Host Metallicities

- Strong-line indicators behave poorly at low metallicity:
 - Nitrogen-sensitive indicators (e.g. O3N2) saturate at low Z due to weak NII
 - Oxygen-sensitive R23 method poorly calibrated at low Z
- SN la hosts appear to be above the cutoff ...

SNfactory Host Metallicities

- Strong-line indicators behave poorly at low metallicity:
 - Nitrogen-sensitive indicators (e.g. O3N2) saturate at low Z due to weak NII
 - Oxygen-sensitive R23 method poorly calibrated at low Z
- SN la hosts appear to be above the cutoff ...
 - ... but so do galaxies with low metallicities measured with the "correct" T_e(OIII) method
- STRONG LINE TECHNIQUES
 NOT ADEQUATE AT LOW
 METALLICITIES!

IT07: Izotov & Thuan 2007 VZ06: van Zee et al. 2006

