Nucleosynthesis in Compact Object Mergers: Dynamics & Detectability

Eliot Quataert (UC Berkeley)

w/ Brian Metzger, Gabriel Martinez-Pinedo, Siva Darbha, Dan Kasen, Almudena Arcones, Tony Piro, Peter Nugent, Rollin Thomas

Overview

- Compact-Object Mergers & Short-Duration GRBs
 - Late-time Activity in Short-Hard GRBs
 - The Disk: Accretion Physics at ~ $M_{\odot} s^{-1}$
 - The Tidal Debris: Fallback Accretion & Nucleosynthesis
 - R-process Powered Transients From Compact Object Mergers

Compact Object Mergers

NS-NS Merger

density contours & velocity vectors

Primary Target for km-scale gravitational wave observatories (e.g., Advanced LIGO)

Leaves Behind Disk ~ 10^{-3} -0.1 M_{\odot} (+ unbound tidal tails ~ 0- 10^{-2} M_{\odot})

$$t_{
m visc} \sim 0.1 \left(rac{lpha}{0.1}
ight)^{-1} \left(rac{r}{100\,{
m km}}
ight)^{3/2} \left(rac{h/r}{0.5}
ight)^{-2} sec \, .$$

consistent w/ short GRB durations

 $\dot{M} \sim M_{\odot} s^{-1} \quad \tau_{\rm photons} \gg 1; \ \tau_{\nu} \sim 1$ \rightarrow disk cooled by neutrinos

Current Puzzles

Swift Bursts

In ~ 1/3 of Swift 'Short' Bursts Extended Emission ~ 30-100 sec Flares on yet longer Timescales Energy up to ~ 10 x Initial Burst nontrivial: t_{dyn} ~ ms; t_{visc} ~ 0.1-1 sec

BATSE Examples

The Evolution of the Remnant Disk

ang momentum conservation \rightarrow disk spreads (& cools)

ID time-dependent Models (α-viscosity; realistic v-cooling)

Late-time Activity From Late-time Accretion?

 $\begin{array}{c} 10^{52} \\ (s) \\ 10^{51} \\ 0 \\ 10^{50} \\ 10^{49} \\ -2 \\ -2 \\ 0 \\ 10_{10}^{49} \\ 10_{10}^{49} \\ 0 \\ 10_{10}^{49} \\ 10_{1$

Initial Disk: 0.1 M_{\odot} & 100 km

Appears to be ample Accretion Energy Available at Late Times ...

Late-time Disk Winds

The Late-time Advective Disk Unbinds Most of the Remaining Mass; aided by fusion to He once T $\lesssim 0.5$ MeV

(Lee & Ramirez-Ruiz 2007; Metzger et al. 2008)

red = high density blue = low density

Ejected Mass ~ $10^{-2} M_{\odot}$ Neutron-rich: Y_e ~ 0.35

Late-time Disk Winds

The Late-time Advective Disk Unbinds Most of the Remaining Mass; aided by fusion to He once T ≤ 0.5 MeV

(Lee & Ramirez-Ruiz 2007; Metzger et al. 2008)

red = high density blue = low density

Ejected Mass ~ $10^{-2} M_{\odot}$ Neutron-rich: Y_e ~ 0.35

Accretion of the Initial Disk Cannot Power Late Time Activity in SGRBs

(unless $\alpha << 10^{-3}$)

Late-Time Activity from Fall-back Accretion?

Late-Time Activity from Fall-back Accretion?

Dynamical Consequences of Nucleosynthesis in Bound Ejecta

Natural Abundance of Elements

r-process: free n's + seed nuclei \rightarrow n-rich elements

 $\Delta E_r \sim 1-3$ MeV/nucl: beta-decays + fission

$$E_{bind} \simeq 1 \left(\frac{t_{orb}}{1 \sec}\right)^{-2/3}$$
MeV/nucl

[not in current merger or fallback sims]

r-process: free n's + seed nuclei \rightarrow n-rich elements

 $\Delta E_r \sim 1-3$ MeV/nucl: beta-decays + fission

$$E_{bind} \simeq 1 \left(\frac{t_{orb}}{1 \sec}\right)^{-2/3} \,\mathrm{MeV/nucl}$$

complete suppression of fallback accretion?

Effect of R-process Htg on M_{fb} (Toy Model)

Qualitative diff. btw. effects of short (0.1 s) and long (1-3 s) duration heating \rightarrow

must capture temporally extended htg

Effect of R-process Htg on M_{fb} (Toy Model)

Qualitative diff. btw. effects of short (0.1 s) and long (1-3 s) duration heating \rightarrow

must capture temporally extended htg

Can this help explain the "Extended Emission" via Fallback?

timescale reasonable
 to explain observed 'gap'

 \times fine-tuning (but see \checkmark)

X extended power > prompt hard to explain (but ∃ large uncertainties in beaming, jet production, emission physics, ... & large dispersion in observed prompt/extended)

hydro calcs of fallback w/ r-process htg required

> Alternatives: $\alpha < 10^{-3}$ difft. progenitor

R-Process Powered Electromagnetic Counterparts of NS Mergers

Observational Signatures of Slower Outflows (not GRB)

NS Tidal Tails unbound during Merger
 Accretion Disk Outflows

no beaming: more complete census of compact object mergers

Rosswog 2007

Natural Abundance of Elements

Heating of Ejected NS Debris in Compact Object Mergers

R-process produces significant heating (~ Ni) at ≤ day

largely β -decays & fission (some γ -rays)

thermalization ~ 50% (Coulomb scattering)

R-process calcs by Almudena Arcones & Gabriel Martinez-Pinedo

Late-time r-process heating robust to variations in composition

To factor ~ few, r-process htg at ~ day same for $Y_e \sim 0.05-0.3$ (i.e., independent of whether nucleosynthesis reaches 2nd vs. 3rd peak)

in all cases have wide range of nuclei beta decaying back to stability

Power-law htg nearly identical to that of radioactive waste from fission reactors (Cottingham & Greenwood 2001)

1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000

Observational Diagnostics

few day "kilonova": L ~ 3 10⁴¹ ergs s⁻¹

spectroscopic: all n-rich elements (no Ni, Fe, C, O, He, Si, H, Ca, ...)

colors, etc. hard to predict bec. insufficient atomic line info for relevant nuclei!

spherical RT w/ SEDONA: $10^{-2} M_{\odot}$

Detection Prospects

- R-process powered transient detectable in 3 ways
 - "blindly" w/ optical transient surveys (now)
 - PTF: ~ I/yr LSST: ~ $I0^{3}/yr$
 - coincident w/ short-duration GRB (now)
 - coincident w/ gravitational wave detection (~5-10 yrs; LIGO, VIRGO)

Summary

- Many short GRBs show significant emission on timescales ~100 sec
 - Origin in Compact Object Mergers?
 - X Initial Disk: blown apart after ~ I sec (neutron rich ejecta)
 - ?? Fallback: severely disrupted by r-process heating

(may account for 'gap' btw prompt & extended emission; more detailed calcs reqd)

- R-process powered electromagnetic counterpart to NS mergers
 - beta-decay & fission of neutron rich ejecta: $\sim 10^{-3}$ MeV/nucleon at \sim day
 - robust to uncertainties in ejecta composition ($Y_e \sim 0.05-0.3$)
 - Predicted Transient
 - L ~ few 10^{41} ergs/s; rise time ~ day; duration ~ 3+ days
 - unique spectrum: n-rich ejecta