LANL Light-Curve Effort

Chris Fryer, John Dahl, Chris Fontes, Lucy Frey, Aimee Hungerford, Tim Kelley, Gabe Rockefeller, Todd Urbatsch + Paolo Mazzali, Stefan Immler (and Swift team – Brown, Bufano, Holland, Milne), Joggerst, Whalen, progenitor collaborators...

LANL Code and Process

Radiation-Hydrodynamics

> Applications

Issues to work on

Precision Models of Supernova Spectra Precision measurements require advanced codes: Here's than LANL approach

- Leverage off of LANL's 1-,2-, and 3dimensional Radiation Adaptive Grid Eulerian (RAGE) code: an AMR code with flux-limited diffusion radiation transport
- LANL atomic opacities
- Added S_n transport for gamma-rays
- Now running production runs in 1-dimension
- "embiggening" feature in code
- Studying NLTE effects
- IMC capability
- Ideal when shock heating important (can't be done in simulations assuming matter/ radiation equilibrium)

Modeling with Roadrunner

- LANL (Tim Kelley) has ported IMC to the cell architecture on Roadrunner (domain decomposed, diffusion/IMC), allowing us to use Monte Carlo transport. Now running 2D simulations.
- Multi-dimensional radiation hydrodynamics with Implicit Monte Carlo on heterogeneous machines with Roadrunner eliminates post-process.
- This experience places LANL in an ideal position to help others port codes to heterogeneous machines.

Code team: Densmore, Hungerford, Kelley, Rockefeller, Thompson, Urbatsch

Collaboration on SciDAC

This effort is very similar to the rad-hydro efforts at CAC (Howell, Kasen). But 2 efforts have many benefits.

- Radiation-Hydrodynamics for photons is not trivial. Two groups, communicating, will solve issues faster (e.g. instability issues, opacities, ...).
- Code Comparison
- Ties the SciDAC more strongly with ASC interests there are a number of technology transfer opportunities (both directions) with NNSA/ASC.
- Opens up obvious ties for joint student/post-doc projects

More Shock Breakout Features

• Even when the radiation is trapped, it can lead the shock the shock position moves faster than Sedov solution would predict. • Just after breakout, the radiation begins to decouple from the material.

What do AICs Look Like? It depends on surroundings and explosion energy.

Fryer et al. 2009

First Stars Breakout Spectra

The • breakout spectra evolve rapidly as the front cools (need higher resolution in our postprocess)

 Long term light-curve evolution: The burst at z=10 is both stretched and reduced by the Ly- α forest. Such bursts may be difficult to detect in transient searches.

CO Mergers as Type Ia progenitors

- Population synthesis predicts much higher rate of CO mergers than any other progenitor. But these mergers tend to have system masses well in excess of the Chandrasekhar mass.
- Merger calculations produce broad debris distributions (LANL working with both LSU and ASU to calibrate mergers).

Time after explosion (d)

Issues

- At breakout, the matter/radiation coupling is rapid must be careful with our operator split coupling for radiationhydrodynamics.
- Diffusion plus free streaming regimes: solved by having a diffusion Monte Carlo scheme. However, most of the energy is in the diffusion region – we must strongly weight the packets to get reasonable resolution above the photosphere.
- Atomic level states are not in equilibrium working on new set of opacities (at least 2 temperature).

•