Sub-Chandrasekhar Mass Models for Type I Supernovae

Stan Woosley Dan Kasen $\dot{M} = 1 - 10 \times 10^{-8} M_e y^{-1}$

Accumulate thick (0.05 - 0.2 $\rm M_{e}$) layer of He on CO dwarf

Early work suggested two outcomes

Woosley, Weaver and Taam (1980,1986) Nomoto (1980, 1982)

1D explorations of double detonation

Livne (1990) Woosley and Weaver (1994)

Early multi-dimensional studies

Arnett (1997), Livne(1997), Benz(1997)

But recent interest rekindled by suggestion of Bildsten et al. (ApJL, 662, L95, 2007) of .la supernovae,

followed by multi-dimensional sumulations

Fink et al, A&A, 476, 1133 (2007)

Fink et al, arXiv:1002.2173, submitted to A&A, 2010

Sim et al, ApJL, 714, L52 (2010)

Fink, Röpke, Hillebrandt et al. A&A, in press

Fig. 1. Explosion evolution for Model 2. The density is color coded, and the solid cyan and magenta lines are the locations of the helium and C/O detonation flames, respectively. Dashed lines in cyan mark the border of the helium shell.

Current claims:

- Ignition in the helium layer will always lead to helium detonation even for helium masses as small as 0.0035 solar masses (Fink et al 2010)
- 2) Helium detonation will invariably lead to detonation of the carbon-oxygen core (Fink et al 2010)
- 3) The explosion of the CO cores will give light curves and spectra that agree with common Type Ia supernovae and may even be the most common mechanism (Sim et al 2007).

Table 3. Total nucleosynthetic yields of selected species or groups of species. $M_{C/O, fuel}$ and $M_{He, fuel}$ are the total masses of initial fuel in the C/O core and the helium shell, respectively. For the helium detonation the values in brackets give the fraction of an isotope mass to the total shell mass $M_{He, fuel}$. M_L is the total mass of all radioactive species that could power a light curve: ⁵⁶Ni, ⁵²Fe, and ⁴⁸Cr. All masses are given in units of M_{\odot} . E_{kin} is the asymptotic total kinetic energy.

Model	1	2	3	4	5	6	
	C/O core detonation						
$M_{\rm C/O, fuel}$	$8.1 \cdot 10^{-1}$	$9.2 \cdot 10^{-1}$	1.03	1.13	1.28	1.39	
$M_{ m IGEs}$	$1.8\cdot10^{-1}$	$3.6 \cdot 10^{-1}$	$5.7 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	1.11	1.33	
$M_{ m IMEs}$	$4.8 \cdot 10^{-1}$	$4.4 \cdot 10^{-1}$	$3.7 \cdot 10^{-1}$	$2.6 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	$3.1 \cdot 10^{-2}$	
$M_{ m ^{56}Ni}$	$1.7 \cdot 10^{-1}$	$3.4 \cdot 10^{-1}$	$5.5 \cdot 10^{-1}$	$7.8 \cdot 10^{-1}$	1.05	1.10	
$M_{ m 52Fe}$	$7.6 \cdot 10^{-3}$	$9.9 \cdot 10^{-3}$	$9.6 \cdot 10^{-3}$	$7.9 \cdot 10^{-3}$	$4.2 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$	
M_{48} Cr	$3.9 \cdot 10^{-4}$	$4.6 \cdot 10^{-4}$	$4.5 \cdot 10^{-4}$	$3.8 \cdot 10^{-4}$	$2.1 \cdot 10^{-4}$	$7.1 \cdot 10^{-5}$	
M_{16}	$1.4 \cdot 10^{-1}$	$1.1 \cdot 10^{-1}$	$8.0 \cdot 10^{-2}$	$4.2 \cdot 10^{-2}$	$3.1 \cdot 10^{-2}$	$1.2 \cdot 10^{-2}$	
$M_{^{12}C}$	$6.6 \cdot 10^{-3}$	$4.4 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$	$8.8 \cdot 10^{-4}$	$5.9 \cdot 10^{-3}$	$7.4 \cdot 10^{-4}$	
			Helium she	ll detonation			
$M_{ m He, fuel}$	$1.3 \cdot 10^{-1}$	$8.4 \cdot 10^{-2}$	$5.5 \cdot 10^{-2}$	$3.9 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	
$M_{ m IGEs}$	$2.9\cdot 10^{-2}$ (23%)	$2.2\cdot 10^{-2}$ (26%)	$1.7\cdot 10^{-2}~(30\%)$	$1.3 \cdot 10^{-2} (33\%)$	$4.2\cdot 10^{-3}$ (32%)	$1.1\cdot 10^{-3}~(31\%)$	
$M_{ m IMEs}$	$1.3 \cdot 10^{-2} (10\%)$	8.2 · 10 ⁻³ (10%)	5.3 · 10 ⁻³ (10%)	5.7 · 10 ⁻³ (15%)	1.9 · 10 ⁻³ (14%)	$7.3 \cdot 10^{-4} \ (\ 21\%)$	
$M_{ m ^{56}Ni}$	$8.4 \cdot 10^{-4}$ (1%)	$1.1 \cdot 10^{-3}$ (1%)	1.7 · 10 ⁻³ (3%)	$4.4\cdot 10^{-3}~(11\%)$	$1.5\cdot 10^{-3}~(11\%)$	5.7 · 10 ⁻⁴ (16%)	
M_{52}_{Fe}	7.6 · 10 ⁻³ (6%)	7.0 · 10 ⁻³ (8%)	$6.2 \cdot 10^{-3} (11\%)$	3.5 · 10 ⁻³ (9%)	$1.2\cdot 10^{-3}~(10\%)$	$2.0\cdot 10^{-4}$ (6%)	
$M_{ m 48}{}_{ m Cr}$	$1.1 \cdot 10^{-2} (-9\%)$	7.8 · 10 ⁻³ (9%)	$4.4 \cdot 10^{-3} (8\%)$	$2.2 \cdot 10^{-3} (-6\%)$	6.8 · 10 ⁻⁴ (5%)	$1.5 \cdot 10^{-4} (-4\%)$	
$M_{ m 44_{Ti}}$	7.9 · 10 ⁻³ (6%)	$5.4 \cdot 10^{-3} (-6\%)$	$3.4 \cdot 10^{-3} (-6\%)$	$1.8 \cdot 10^{-3} (5\%)$	$4.9 \cdot 10^{-4} (-4\%)$	$6.2 \cdot 10^{-5}$ (2%)	
M_{40} Ca	$4.7 \cdot 10^{-3} (-4\%)$	$3.2 \cdot 10^{-3} (-4\%)$	$2.2 \cdot 10^{-3} (-4\%)$	$2.2 \cdot 10^{-3} (-6\%)$	6.8 · 10 ⁻⁴ (5%)	$2.4 \cdot 10^{-4}$ (7%)	
$M_{ m He}$	$8.4\cdot10^{-2}$ (66%)	$5.3 \cdot 10^{-2}$ (63%)	$3.3 \cdot 10^{-2}$ (60%)	$2.0\cdot 10^{-2}~(~52\%)$	$6.9 \cdot 10^{-3}$ (54%)	$1.7\cdot 10^{-3}$ (48%)	
M_L	$2.0 \cdot 10^{-1}$	$3.7 \cdot 10^{-1}$	$5.7 \cdot 10^{-1}$	$8.0 \cdot 10^{-1}$	1.06	1.10	
$E_{\rm kin} \ [10^{51} \ {\rm erg}]$	0.90	1.04	1.20	1.40	1.59	1.68	

IGE = iron group elements - ⁴⁴Ti, ⁴⁸Cr, ⁵²Fe

IME = intermediate mass e;ements - Si, S, Ar, Ca

One Dimensional Models

Model	Mass	\dot{M}	$M_{\rm acc}$	M_{ign}	$ ho_{ m ign}$	$M(^{56}Ni)$	$M_{out}(^{56}Ni)$	Note
11A	1.1	7	0.0510	0.0234	9.4(5)	0.0	0.0	с
11B	1.1	6	0.0568	0.0387	1.5(6)	0.00794	0.00794	с
11C	1.1	5	0.0620	0.0529	2.2(6)	0.848	0.0268	a
11D	1.1	4	0.0881	0.0816	3.6(6)	0.927	0.0572	a
11E	1.1	3	0.133	0.133	7.9(6)	1.04	0.0949	d
11F	1.1	2	0.200	0.200	2.4(7)	1.11	0.162	d
11E1	1.1	3	0.133	0.133	7.9(6)	0.109	0.109	с
11F1	1.1	2	0.200	0.200	2.4(7)	0.162	0.161	с
10A	1.0	6	0.0709	0.0337	8.3(5)	0.	0.	b
10B	1.0	5	0.0819	0.0618	1.5(6)	0.745	0.0212	d?
10C	1.0	4	0.0905	0.0744	1.8(6)	0.709	0.0393	a
10D	1.0	3	0.116	0.114	3.2(6)	0.785	0.0660	a
10E	1.0	2	0.178	0.178	7.0(6)	0.969	0.125	d
10B1	1.0	5	0.0819	0.0618	1.5(6)	0.0138	0.0138	с
10E1	1.0	2	0.178	0.178	7.0(6)	0.125	0.125	С

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model	Mass	М	$M_{\rm acc}$	M_{ign}	$ ho_{ m ign}$	$M(^{56}Ni)$	$M_{out}({}^{56}Ni)$	Note
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Î9A	0.9	5	0.100	0.0562	9.0(5)	2.5(-4)	2.5(-4)	с
9C 0.9 4 0.114 0.0972 $1.6(6)$ 0.611 0.0397 d9D 0.9 3 0.126 0.108 $1.8(6)$ 0.639 0.051 d*9E 0.9 3 0.126 0.108 $1.8(6)$ 0.620 0.0542 a9F 0.9 2 0.154 0.154 $3.0(6)$ 0.727 0.0833 d9C1 0.9 4 0.114 0.0972 $1.6(6)$ 0.0397 0.0397 c9F1 0.9 2 0.154 0.154 $3.0(6)$ 0.0832 0.0832 cc8A 0.8 5 0.117 0.0690 $7.4(5)$ $0.$ $0.$ c8B 0.8 4 0.142 0.114 $1.3(6)$ 0.388 0.0460 a8C 0.8 3 0.157 0.141 $1.6(6)$ 0.419 0.0644 a8D 0.8 2 0.175 0.175 $2.4(6)$ 0.579 0.0833 d8E 0.8 1 0.280 0.280 $6.3(6)$ 0.841 0.197 d8D1 0.8 2 0.175 0.175 $2.4(6)$ 0.0833 0.0833 c8D2 0.8 1 0.280 0.280 $6.3(6)$ 0.197 0.197 c7A 0.7 5 0.121 0.082 $5.9(5)$ $0.$ $0.$ b7B 0.7 4 0.153 0.105 $8.3(5)$ $5.5(-4)$ $5.5(-4)$ c </td <td>9B</td> <td>0.8</td> <td>4.5</td> <td>0.109</td> <td>0.0803</td> <td>1.3(6)</td> <td>0.0143</td> <td>0.0143</td> <td>с</td>	9B	0.8	4.5	0.109	0.0803	1.3(6)	0.0143	0.0143	с
9D 0.9 3 0.126 0.108 $1.8(6)$ 0.639 0.051 d^* 9E 0.9 3 0.126 0.108 $1.8(6)$ 0.620 0.0542 a9F 0.9 2 0.154 0.154 $3.0(6)$ 0.727 0.0833 d9C1 0.9 4 0.114 0.0972 $1.6(6)$ 0.0397 0.0397 c9F1 0.9 2 0.154 0.154 $3.0(6)$ 0.0832 0.0832 cc8A 0.8 5 0.117 0.0690 $7.4(5)$ $0.$ $0.$ c 8B 0.8 4 0.142 0.114 $1.3(6)$ 0.388 0.0460 a 8C 0.8 3 0.157 0.141 $1.6(6)$ 0.419 0.0644 a 8D 0.8 2 0.175 0.175 $2.4(6)$ 0.579 0.0833 d 8E 0.8 1 0.280 0.280 $6.3(6)$ 0.841 0.197 d 8D1 0.8 2 0.175 0.175 $2.4(6)$ 0.0833 0.0833 c 8D2 0.8 1 0.280 0.280 $6.3(6)$ 0.197 0.197 c 7A 0.7 5 0.121 0.082 $5.9(5)$ $0.$ $0.$ b 7B 0.7 4 0.153 0.105 $8.3(5)$ $5.5(-4)$ $5.5(-4)$ c 7C 0.7 3 0.186 0.175 $1.6(6)$ 0.262 0.068	9C	0.9	4	0.114	0.0972	1.6(6)	0.611	0.0397	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9D	0.9	3	0.126	0.108	1.8(6)	0.639	0.051	d^*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$9\mathrm{E}$	0.9	3	0.126	0.108	1.8(6)	0.620	0.0542	a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9F	0.9	2	0.154	0.154	3.0(6)	0.727	0.0833	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9C1	0.9	4	0.114	0.0972	1.6(6)	0.0397	0.0397	с
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9F1	0.9	2	0.154	0.154	3.0(6)	0.0832	0.0832	с
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8A	0.8	5	0.117	0.0690	7.4(5)	0.	0.	с
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8B	0.8	4	0.142	0.114	1.3(6)	0.388	0.0460	a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$8\mathrm{C}$	0.8	3	0.157	0.141	1.6(6)	0.419	0.0644	a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8D	0.8	2	0.175	0.175	2.4(6)	0.579	0.0833	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$8\mathrm{E}$	0.8	1	0.280	0.280	6.3(6)	0.841	0.197	d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8D1	0.8	2	0.175	0.175	2.4(6)	0.0833	0.0833	с
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8D2	0.8	1	0.280	0.280	6.3(6)	0.197	0.197	с
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7A	0.7	5	0.121	0.082	5.9(5)	0.	0.	b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$7\mathrm{B}$	0.7	4	0.153	0.105	8.3(5)	5.5(-4)	5.5(-4)	с
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$7\mathrm{C}$	0.7	3	0.186	0.175	1.6(6)	0.262	0.068	a
7E 0.7 1 0.261 0.261 $3.3(6)$ 0.615 0.154 d7E1 0.7 1 0.261 0.261 $3.3e6$ 0.154 0.154 c	$7\mathrm{D}$	0.7	2	0.209	0.182	1.8(6)	0.327	0.0928	a
7E1 0.7 1 0.261 0.261 $3.3e6$ 0.154 0.154 c	$7\mathrm{E}$	0.7	1	0.261	0.261	3.3(6)	0.615	0.154	d
	7 E1	0.7	1	0.261	0.261	3.3e6	0.154	0.154	c

Helium Deflagration

1pa2b = 1.0 + 0.082 (0.0.014)p9b1b = 0.9 + 0.114 (0.61, 0.040)

p8d1a = 0.8 + 0.18 (0.58, 0.083)deflg1g = 1.0 + 0.093 (0.,9 x 10⁻⁵)

0.8 solar mass CO dwarf accreting at 2 x 10⁻⁸ solar masses y⁻¹

0.175 solar masses of He

makes 0.58 solar masses of ⁵⁶Ni, 0.08 of which is in the helium shell

Compared with a typical SN Ia

0.9 solar mass CO dwarf accretes at 4 x 10⁻⁸ solar masses per year

0.114 solar mass He layer

Makes 0.61 solar masses of ⁵⁶NI, 0.04 of which is in the He shell

Compared with a typical (faint) SN Ia, SN 1981B.

Summary

- Need over 0.05 solar masses of helium shell or detonation never develops
- Difficult to develop strong inwards compression front without making ~ 0.01 solar masses of ⁵⁶Ni
- Outcome very sensitive to the treatment of pre-explosive convection.

Helium deflagration Helium deflagration-detonation Helium detonation-carbon deflagration Helium detonation-carbon detonation

- Munich studies have shown that a helium detonation will propagate once ignited. That does not necessarily mean that detonation occurs
- Secondary (carbon) detonation will depend on the 3D geometry of ignition.
- Outcome may be judged by observations before it is settled theoretically. A variety of transients are possible. Some resemble events that have been seen.

Fink et al.

Fig. A.1. Mass fractions of the species in the C/O detonation table plotted against the density of the unburned fuel ρ_u

Fig. A.1. Mass fractions of the species in the C/O detonation table plotted against the density of the unburned fuel ρ_u

Fig. A.2. Mass fractions of the species in the helium detonation table against ρ_u . ¹²C and ¹⁶O abundances are not shown, as their values are too close to zero.