Modeling Convection and Ignition in Type Ia Supernovae

Ann Almgren, Andy Nonaka, John Bell (LBL), and Stan Woosley (UCSC)

MZ is supported by a DOE/Office of Nuclear Physics Outstanding Junior Investigator award, grant No. DE-FG02-06ER41448, to SUNY Stony Brook.

Computer time was provided through a DOE INCITE allocation at the NCCS/ORNL and on Livermore Computing's Atlas machine.

Type la Supernovae (single-degenerate scenario)

(David A. Hardy & PPARC)

Accretion from binary companion. Grows to M_{ch}

> 2 "Smoldering" phase—central T rises → flame born

SN 1994D (High-Z SN Search team

3 Flame propagation. Initially subsonic, but detonation transition?

Explosion! Lightcurve powered by Ni decay. Width / luminosity relation.

(Roepke and Hillebrandt 2005)

Previous Convection Calculations

► Hoflich and Stein modeled a 2-d wedge using an implicit code. Found flow caused compression near the center. Suggested ignition near the center.

(Hoflich and Stein 2002)

✓ Kuhlen et al. modeled the convectively unstable region, with the very center cut out. The observed a characteristic dipole feature and suggested that offcenter ignition was likely.

(Kuhlen et al. 2006)

No previous calculations have modeled the entire star.

With rare exception, explosion calculations begin with zero velocity.

Mapping

Zingale, Almgren, Bell, Nonaka, & Woosley 2009, ApJ, 704, 196 Nonaka, Almgren, Bell, Lijewski, Malone, & Zingale 2010, ApJS, 188, 358

- Spherical star
 - 1-d hydrostatic radial base state $abla p_0 = ho_0 g \mathbf{e}_r$
 - 3-d Cartesian full state
 - Not aligned
- Cartesian grid eliminates coordinate singularities
- Mapping needed
 - Best results with $\Delta r < \Delta x$

WD Convection: Initial Study Dipole Convection

Zingale, Almgren, Bell, Nonaka, & Woosley 2009,, ApJ, 704, 196.

- Recover dipole feature seen in previous calculations
 - Asymmetry in radial velocity field
- Direction of dipole changes rapidly

WD Convection: Initial Study Convective Speeds

Zingale, Almgren, Bell, Nonaka, & Woosley 2009, ApJ, 704, 196.

- Radial velocities ~ 10⁷ cm/s imply convective turnover time of ~ 20 s.
 - Same magnitude as initial laminar flame speed.
- Explosion model calculations need to model the initial flow.

WD Convection: Initial Study Runaway

Zingale, Almgren, Bell, Nonaka, & Woosley 2009, ApJ, 704, 196.

 $imes 10^8$ 8.0 Temperature $\times 10^{8}$ increase nonlinear 8.0 7.8 Ignition occurs as T 7.6 7.5 crosses $8 \times 10^8 \text{ K}$ 7.4 7.2 - "Failed" hotspots 7.0 seen toward the end. (\mathbf{K}) 6.8 $T_{
m peak}$ 7.0 6.6 7100 6900 7000 6.5 6.0 2000 3000 4000 5000 6000 7000 1000 t (s)

WD Convection: Initial Study Resolution Sensitivity

Zingale, Almgren, Bell, Nonaka, & Woosley 2009, ApJ, 704,196.

- 128³, 256³, 384³
 simulations run with identical parameters
 - Lower resolution ignites earlier
 - Some convergence seen

Improved Calculations

- New energetics
- PPM advection
- Base state evolution
- Rotation
- Better coupling between base state and full state

Improved Calculations Rotating vs. Non-rotating

Zingale et al. 2010, in preparation.

velocity fluctations...

Improved Calculations Rotating vs. Non-rotating

Zingale et al. 2010, in preparation.

- Both models in low-Mach number regime up until ignition
 - Maximum Mach number is in outer stable region

Improved Calculations AMR: Improving Resolution

 Adding a level of refinement late in the evolution appears well-behaved.

Improved Calculations Strongly Non-linear Ignition

Zingale et al. 2010, in preparation.

 Radius of hot spot fluctuates widely up until ignition

Ignition Summary

Table 1. Ignition parameters from different simulations

ID	simulation description	grid ^a	Δx (km)	R _{ignite} (km)	$(v_r)_{ignite}^{b}$ (km s ⁻¹)	source
A	non-rotating WD, $T_c=6.25\times 10^8$ K initial model, new energetics, PPM, $\rho_{\rm cutoff}=10^5~{\rm g~cm^{-3}}$	384 ³	13.0	11.3	0.14	this paper
В	rotating WD (1.5% Keplerian), $T_c=6.25\times 10^8$ K initial model, new energetics, PPM, $\rho_{\rm cutoff}=10^5~{\rm g~cm^{-3}}$	384 ³	13.0	46.4	7.0	this paper
С	rotating WD (3.0% Keplerian), $T_c=6.25\times 10^8$ K initial model, new energetics, PPM, $\rho_{\rm cutoff}=10^5~{\rm g~cm^{-3}}$	384 ³	13.0			this paper
D	restart of simulation A after 9846 s with 1 level of refine- ment near the center	768 ³	6.5	34.9	21.2	this paper
E	restart of simulation B after 7989 s with 1 level of refine- ment near the center	768 ³	6.5	40.5	6.7	this paper
-	non-rotating WD, $T_c=6\times 10^8$ K initial model, old energetics, piece-wise linear, $\rho_{\rm cutoff}=10^6$ g cm^{-3}	256 ³	19.5	32.4	2.9	Zingale et al. (2009)
-	non-rotating WD, $T_c=6\times 10^8$ K initial model, old energetics, piece-wise linear, $\rho_{\rm cutoff}=3\times 10^6$ g cm^{-3}	256 ³	19.5	84.6	39.0	Zingale et al. (2009)
-	non-rotating WD, $T_c=6\times 10^8$ K initial model, old energetics, piece-wise linear, $\rho_{\rm cutoff}=3\times 10^6$ g cm^{-3}	384 ³	13.0	21.6	4.8	Zingale et al. (2009)

^aeffective resolution (if AMR)

^bpositive values indicate outflow, negative values indicate inflow

.44e-02	
.52e-02	
.60e-02	
.68e-02	
.76e-02	
.84e-02	
.20e-03	
.09e-11	

- MAESTRO also being used to model:
 - X-ray bursts (Chris Malone, SBU)
 - Sub-Chandra la models (just started)
- neutron star. (2-d; Classical nova modeled by (Brendan Krueger, SBU, just started)
 - Massive star H convection (Candace Gilet, UCB/LBL, just started)

Summary

- Modern algorithms / fast supercomputers are now able to model convective astrophysical flows for many turnover times in full 3-d.
- Rapidly changing convective field
 - Typical convective velocities ~ laminar flame speed
 - Accurate explosion calculations will need a realization of the velocity field
- Maximum Mach number O(0.1) toward very end of calculation (in outer layers)
- Range of ignition locations seen
- Large parameter study needed to map out distribution of allowed ignition radii
- Acoustics or mapping into a compressible code needed to explore the "second ignition".