Measurement of V_{cb}

Tom Browder (University of Hawaii)

Inclusive approaches

Exclusive approaches $(B \rightarrow D^* l v, B \rightarrow D l v)$ Moments and Form factors (if time permits) Conclusion

The V_{cb} element of the CKM matrix

$$\begin{pmatrix} Vud & Vus & Vub \\ Vcd & Vcs & Vcb \\ Vtd & Vts & Vtb \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Determination of V_{cb} allows the determination of A, which is important for indirect constraints on the CKM triangle. For example, the CPV parameter ϵ_{K} is proportional to A⁴.

Inclusive Approach to $b \rightarrow c$

Hadronic effects are restricted to the lower part of the graph.

Sum over all final states: *only detect the final state lepton*.

Inclusive Approach to $b \rightarrow c$ (single leptons)

ACCM model (inclusive)

ISGW** model (exclusive)

Either cut at $p_L^* > 1.4$ *GeV and accept large model dependence or fit: the correlation between b* $\rightarrow c$ *(direct) and b->c* $\rightarrow s l v$ *(cascade) component leads to model dependence e.g. BF: 10.42% to 10.98%*

Inclusive Approach to $b \rightarrow c l \upsilon$ (dileptons)

To overcome this problem, ARGUS introduced a new approach using dileptons.

Idea: tag with one high momentum lepton $p^*>1.4$ GeV (to guarantee that it is from a primary $b \rightarrow c$ decay). Then examine a second lepton with $p^*>0.6$ GeV.

The charge correlation (**opposite for direct leptons** and same for cascade leptons) eliminates correlation problem. The angular correlation between the two leptons removes the background due to leptons from the same B meson.

Application of the dilepton method to $b \rightarrow c l v$

Example from Belle

High momentum lepton tag: $1.4 < p_l < 2.2 \text{ GeV}$

Require an additional electron $(p_e \text{ down to 0.6 GeV})$

Divide the sample into opposite/

Suppress secondary opposite sign leptons a 20000 with $p_e + \cos le > 1.2$ ' cos le = opening and '

Estimate # of electrons by fitting E/pin momentum bins.

Application of the dilepton method to $b \rightarrow c l v$

$$\begin{pmatrix} N_{+}(p^{*}) \\ N_{\pm\pm}(p^{*}) \end{pmatrix} = N_{tag} \begin{pmatrix} \varepsilon_{1}(1-\chi) & \varepsilon_{1}\chi \\ \varepsilon_{2}\chi & \varepsilon_{2}(1-\chi) \end{pmatrix} \begin{pmatrix} \frac{dBR(b \to evX)}{dp^{*}} \\ \frac{dBR(b \to evX)}{dp^{*}} \end{pmatrix}$$

 $\chi = \chi_0 f_{00} = 0.0843 \pm 0.0060$ mixing parameter(PDG) $\varepsilon_1 : \text{ eff. for opposite sign}$ $\varepsilon_2 : \text{ eff. for same sign}$

Correct for B–Bbar mixing and the small fraction of signal (6.1%) below 0.6 GeV.

 $BF(b \rightarrow c \mid v) = 10.90 \pm 0.12 \pm 0.49\%$

$B \rightarrow c l v$ with Fully Reconstructed B Tags

• Fully reconstructed hadronic B decays: $B \rightarrow D^{(*)}\pi$, $D^{(*)}\rho$, D^*a_1 $\rightarrow J/\psi K^{(*)}$, $\psi(2S) K^{(*)}$

Check whether spectator quark effects are important – compare B_{SL} for B+ and B^0 decays.

Determinations of BF($b \rightarrow c l v$)

Expt.	BF	र sta	it sys	t
CLEO	10.4	19 ±0.	17 ± 0.4	43
BELLE (ℓ Tag)	10.9	90 ±0.	12 ±0.4	49 🗲
BABAR (e Tag) 10.8	$37 \pm 0.$	18 ± 0.3	30
Average	10.0	33 ±0.	19 ± 0.1	16
Expt.	BR	stat	syst	model
ALEPH	10.70	± 0.10	±0.23	±0.26
Delphi	10.70	± 0.08	± 0.21	$^{+0.44}_{-0.30}$
L3	10.85	± 0.12	±0.38	±0.26
L3 (double tag)	10.16	± 0.13	±0.20	±0.22
Opal	10.83	± 0.10	±0.20	$^{+0.20}_{-0.13}$
Average	10.63	±0.09	±0.15	± 0.18

Eid, tracking, and low p background subtractions

Good agreement between Upsilon(4S) and LEP results.

Conversion of BF($b \rightarrow c \mid v$) to V_{cb}

$$\implies |\mathcal{V}cb|^2 \cong Br(B \to Xlv) / \tau_B$$

Using the Belle result

Model	$ Vcb x10^{-2}$
ACCMM	$4.10 \pm 0.10 \pm 0.40$
ISGW2	$4.00 \pm 0.10 \pm 0.40$
M.Shifman	$4.04 \pm 0.10 \pm 0.20$
P.Ball	$3.95 \pm 0.09 \pm 0.19$

This type of determination also assumes quarkhadron duality i.e. that the inclusive quark-level rate reproduces the sum of a few exclusive states $(B \rightarrow D \mid v, B \rightarrow D^* \mid v, B \rightarrow D^{**} \mid v)$

OPE Expansion and Moments

$$\Gamma_{\rm sl} = \frac{G_{\rm F}^{2} |V_{\rm cb}|^{2}}{192 \,\pi^{3}} \,m_{\rm B}^{5} \,c_{1} \left\{ 1 - c_{2} \,\frac{\alpha_{\rm s}}{\pi} + \frac{c_{3}}{m_{\rm B}} \overline{\Lambda} \,(1 - c_{4} \,\frac{\alpha_{\rm s}}{\pi}) + \frac{c_{5}}{m_{\rm B}^{2}} (\overline{\Lambda}^{2} + c_{6} \lambda_{1} + c_{7} \lambda_{2}) \right. \\ \left. + O(\frac{1}{m_{\rm B}^{3}}) + O(\frac{\alpha_{\rm s}^{2}}{\pi}) \cdots \right\}$$

 Λ , λ_1 , λ_2 are non-perturbative parameters.

 λ_1 (-) kinetic energy of the b-quark (a.k.a μ_{π}^2)

 λ_2 hyperfine splitting from B*-B mass difference, λ_2 =0.12GeV² (a.k.a μ_C^2)

 $\Lambda = m_B - m_b + (\lambda_1 - 3 \lambda_2)/2m_B \dots$ (energy of "light DOF")

-Additional parameters enter at higher orders ($\rho_1, \rho_2, \tau_1, \tau_2, \tau_3, \tau_4$); use theoretical estimates

 Λ , λ_1 , λ_2 are the main sources of theoretical uncertainty in inclusive V_{cb} (calibrate γ_c).

Conversion of BF($b \rightarrow c \mid v$) to $|V_{cb}|$

Idea: The non-perturbative parameters Λ , λ_1 , λ_2 can be determined from other experimental measurements.

 $b \rightarrow s \gamma$ photon energy moments, $b \rightarrow c \mid v \mid epton energy moments,$ and $b \rightarrow c \mid v \mid hadronic mass$ moments.

For example:
$$\langle E_{\gamma} \rangle$$
 and
 $\langle E_{\gamma} \rangle^{2} - \langle E_{\gamma}^{2} \rangle$ in $b \rightarrow s \gamma$

BaBar: Moments of the M_x Distribution

Binned χ^2 fit to M_X Distribution: 4 Contributions $D = f_D P_D + f_{D*} P_{D*} + f_{HX} P_{HX} + f_{BG}(fixed)P_{BG}$

OPE parameters determined from two sets of moments:

 $\Lambda = 0.35 \pm 0.07 \pm 0.10 \text{ GeV}, \lambda_1 = 0.236 \pm 0.071 \pm 0.078 \text{GeV}^2$

BaBar: Problem with E_L cut dependence of moments.

Using the measured OPE parameters, can determine a more precise V_{cb} value.

$$V_{cb} = (40.4 \pm 0.5(exp) \pm 0.5(\lambda_1, \Lambda) \pm 0.8(theo)) \times 10^{-3}$$

 V_{cb} from B $\rightarrow D^{(*)}$ l v at zero recoil

The differential rate for $B \rightarrow D^{(*)} l v$ at zero recoil is related to Vcb:

$$\frac{d\Gamma}{d\omega} \propto \left| V_{cb} \right|^2 F_{D^{(*)}}^2(\omega)$$

ω: relativistic γ factor of the D^{*} in the B rest frame $(ω = E_{D^*}/m_{D^*})$ $ω = v \cdot v'$, the dot product of B and D^(*) 4-velocities. Other notations are used including: w, y

$$\omega = (m_B^2 + m_{D^*}^2 - q^2) \frac{1}{2m_B m_{D^*}}$$

 V_{cb} from B $\rightarrow D^{(*)}$ l v at zero recoil

 $\frac{d\Gamma}{d\omega} \propto \left| V_{cb} \right|^2 F_{D^{(*)}}^{2}(\omega)$

In the zero-recoil configuration, HQET symmetry implies $F(\omega = 1)=1$ with small theoretical corrections.

Luke's theorem: the corrections to 1 are $O(1/m_b^2)$ for $B \rightarrow D^* 1 v$ in HQET. From models and lattice, $F(1)=0.91\pm0.04$ (PDG)

Initial B meson

Light degrees of freedom are not disturbed \rightarrow F(1)=1

Theory uncertainties still at the 3-4% level

Experimental issues for zero recoil: *The* D^* *is nearly at rest i.e. slow pion from* $D^* \rightarrow D \pi$ *has a very low momentum.*

But at LEP eff is flat.

Rate is proportional to p_{D^*} . (At zero recoil there is no rate). *Measure the rate near zero recoil, then assume a functional form for F(\omega) and <i>extrapolate.*

FIG. 1. The candidate yields for 1.10 < w < 1.15 bin with the results of the fit superimposed for (a) $D^{*+}\ell^-\bar{\nu}$ and for (b) $D^{*0}\ell^-\bar{\nu}$. The fit uses the region between the arrows.

$$\cos\theta_{B-Xl} = \frac{2E_{B}E_{Xl} - M^{2}_{B} - M^{2}_{Xl}}{2|\vec{p}_{B}||\vec{p}_{Xl}|}$$

 $|\cos_{B-X1}| < 1$ if X and lepton come from signal

CLEO 2002: V_{cb} from B $\rightarrow D^{(*)}$ l v at zero recoil

Belle: Sensitivity of $|V_{cb}|$ to FF parameterization.

Summary of fit results according to different form factor (FF) parameterizations, where the errors are statistical only. Our main analysis uses values of $R_1(1)$, $R_2(1)$ from QCD sum rules.

FF shape & $R_1(1), R_2(1)$	$ V_{cb} F(1)\cdot 10^2$	$ ho_{A_1}^2$	$ ho_F^2$	$\mathcal{B}(\bar{B^0} \to D^{*+} e^- \bar{\nu})$	χ^2/ndf
Dispersive & QCD sum rules	$3.54{\pm}0.19$	1.35 ± 0.17		$(4.59 \pm 0.23)\%$	3.38/8
Dispersive & CLEO value	$3.58{\pm}0.19$	1.45 ± 0.16		$(4.60 \pm 0.23)\%$	3.79/8
Linear & Heavy quark limit	$3.42{\pm}0.17$		0.81 ± 0.12	$(4.57 \pm 0.24)\%$	2.23/8

$B \rightarrow D^* l v$ Form Factor Parametrization Issues I

$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = \frac{G_F^2}{48\pi^3} M_{D^*}^3 (M_B - M_{D^*})^2 \sqrt{w^2 - 1} (w+1)^2 g(w) |V_{cb}|^2 F_{D^*}^2 (w)$$

where $g(w) = \left[1 + \frac{4w}{(1+w)} \frac{1 - 2wr + r^2}{(1-r)^2}\right], r = \frac{M_{D^*}}{M_B}$

First round of measurements assumed a linear functional form for F(y).

$$F(\omega) = F(1) [1 - \rho^2 (\omega - 1) + O(\omega^2)]$$

$B \rightarrow D^* l v$ Form Factor Parametrization Issues II

$$\frac{d\Gamma(B \to D^* l\nu)}{dw} = \frac{G_F^2}{48\pi^3} M_{D^*}^3 (M_B - M_{D^*})^2 \sqrt{w^2 - 1} (w + 1)^2 g(w) |V_{cb}|^2 F_{D^*}^2 (w)$$

Using the axial vector form factor $A_1(y)$, form factor ratios $R_1(y)$ and $R_2(y)$

$$g(w)F_{D^*}^2(w) = \left[2\left(\frac{1-2wr+r^2}{(1-r)^2}\right)\left(1+R_1^2(w)\frac{w-1}{w+1}\right) + \left(1+\left(1-R_2(w)\right)\frac{w-1}{1-r}\right)^2\right]A_1^2(w)$$

Dispersion relations give model-independent bounds on form factors (Caprini, NP B530 (1998)) $z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$

$$\begin{aligned} & \mathsf{R}_1(\mathsf{w}) \sim \ \ & \mathsf{R}_1(1) - 0.12(\mathsf{w}-1) + 0.05(\mathsf{w}-1)^2 \\ & \mathsf{R}_2(\mathsf{w}) \sim \ & \mathsf{R}_2(1) - 0.11(\mathsf{w}-1) - 0.06(\mathsf{w}-1)^2 \\ & \mathsf{A}_1(\mathsf{w}) \sim \ & \mathsf{A}_1(1)[1 - 8r^2z + (53r^2 - 15)z^2 - (231r^2 - 91)z^3] \end{aligned}$$

V_{cb} from the end point of B ->D^(*) l v

experiment	$\mathcal{F}(1) V_{\rm cb} $ (×10 ³)	$ ho^2$	$\operatorname{Corr}_{\operatorname{stat}}$
ALEPH	$33.8 \pm 2.1 \pm 1.6$	$0.74 \pm 0.25 \pm 0.41$	94%
DELPHI	$36.1 \pm 1.4 \pm 2.5$	$1.42 \pm 0.14 \pm 0.37$	94%
OPAL	$38.5 \pm 0.9 \pm 1.8$	$1.35 \pm 0.12 \pm 0.31$	89%
Belle	$36.0 \pm 1.9 \pm 1.8$	$1.45 \pm 0.16 \pm 0.20$	90%
CLEO	$43.3 \pm 1.3 \pm 1.8$	$1.61 \pm 0.09 \pm 0.21$	86%
World average	$38.3 \pm 0.5 \pm 0.9$	$1.51 \pm 0.05 \pm 0.12$	86%

Artuso and Barbieri.

Exp error is only 2.7%, limited by theory

Uncertainty in B ->D** 1 v background

$B \rightarrow D l \nu \text{ versus } B \rightarrow D^* l \nu \text{ for } V_{cb}$

(+)Detection efficiency for $B \rightarrow D$ is higher than $B \rightarrow D^*$ (no slow π).

(-)Background is worse for $B \rightarrow D$ (no D^* mass constraint).

(-) $B \rightarrow D l v$ has a p_D^3 suppression while $B \rightarrow D^* l v$ has only a p_{D^*} suppression

(-)Luke's theorem does not apply to $B \rightarrow D \mid v$. There are $O(1/m_b)$ corrections. (See Ligeti's talk).

Variables for exclusive semileptonic analysis via v reconstruction (used for $B \rightarrow D l v$)

$$p_{miss} = -\sum p_{i}$$

$$E_{miss} = 2 E_{beam} - \sum E_{i}$$

$$M^{2}_{miss} = E^{2}_{miss} - P^{2}_{miss}$$

$$p_{v} = (p_{miss}, |p_{miss}|)$$

Can then form ΔE and M_B

$$\Delta E \equiv E_{beam} - (E_{\pi} + E_{l} + E_{\nu})$$
$$M_{B} \equiv \sqrt{E^{2}_{beam} - \left|p_{\pi} + p_{l} + p_{\nu}\right|^{2}}$$

where Ebeam = 5.29 GeV

Belle: $B \rightarrow D l v$

Note high efficiency but large backgrounds.

Results on V_{cb} and ρ^2 from $B {\buildrel } D^{(*)} \, l \, \nu$

$$B^0 -> D^- l^+ v$$

 $B^0 -> D^{*-} l^+ v$

All using a linear model

All using a dispersion relation

Test HQET: $B \rightarrow D \mid v$ versus $B \rightarrow D^* \mid v$

From the results of $\bar{B}^0 \to D^{*+}e^-\bar{\nu}$ analysis at Belle, the ratio of $F_D(1)$ and $F_{D^*}(1)$ and the difference between $\hat{\rho}_D^2$ and $\hat{\rho}_{D^*}^2$ are measured to be

$$\frac{F_D(1)}{F_{D^*}(1)} = \begin{cases} 1.12 \pm 0.12 \pm 0.12 \text{ (Linear form factor)} \\ 1.16 \pm 0.14 \pm 0.12 \text{ (Caprini et al. form factor)} \end{cases}$$

2

 $\hat{\rho}_D^2 - \hat{\rho}_{D^*}^2 = \begin{cases} -0.12 \pm 0.18 \pm 0.13 \text{ (Linear form factor)} \\ -0.23 \pm 0.29 \pm 0.20 \text{ (Caprini et al. form factor),} \end{cases}$

The size of $O(1/m_0)$ corrections is not large.

With more data, we will start to observe these corrections to HQET.

Motivation for $B \rightarrow D^{(*)} l \nu$ form factor analysis

HQET which is used to extract V_{cb} also predicts ratios of form factors.

Form factors are a major source of uncertainty in $|V_{ub}|$ analysis.

Imagine $B \rightarrow D \mid v$ and $B \rightarrow D^* \mid v$ as two body $B \rightarrow D W$ and $D^* W$ decays. The first is a p-wave while the latter can be either a s, p or d-wave

Definition of angles for $B \rightarrow D^* l \nu$ FF analysis

Fig. 34. Definition of the angles θ_V , θ_ℓ , and χ in the decay $\bar{B} \to D^* \ell^- \bar{\nu}$. (These angles are used for any $P \to V \ell \nu$ in which the vector meson decays into two pseudoscalars.) The lepton and neutrino are drawn back to back because they are shown in the W^* rest frame. Similarly, the D and the π are shown in the D^* rest frame. The angle θ_ℓ is thus measured in the W rest frame, while θ_V is measured in the D^* rest frame. The azimuthal angle χ is measured between the W and D^* decay planes. In the literature, the angle θ_ℓ is sometimes defined as the direction between the charged lepton and the recoiling vector meson, measured in the $\ell \nu$ rest frame.

Differential rate for $B \rightarrow D^* l v$

The differential decay rate for $P(Q\overline{q}) \to V(q'\overline{q})\ell^-\overline{\nu}, V \to P_1P_2$ can be expressed in terms of these four kinematic variables q^2 , θ_ℓ , θ_V and χ (Gilm90, Korn90b):

$$\frac{d\Gamma(P \to V\ell\nu, V \to P_1P_2)}{dq^2 d\cos\theta_V d\cos\theta_\ell d\chi} = \frac{3}{8(4\pi)^4} G_F^2 |V_{q'Q}|^2 \frac{p_V q^2}{M^2} \mathcal{B}(V \to P_1P_2) \\
\times \{(1 - \eta\cos\theta_\ell)^2 \sin^2\theta_V |H_+(q^2)|^2 \\
+ (1 + \eta\cos\theta_\ell)^2 \sin^2\theta_V |H_-(q^2)|^2 \\
+ 4\sin^2\theta_\ell \cos^2\theta_V |H_0(q^2)|^2 \\
- 4\eta\sin\theta_\ell (1 - \eta\cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi H_+(q^2)H_0(q^2) \\
+ 4\eta\sin\theta_\ell (1 + \eta\cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi H_-(q^2)H_0(q^2) \\
- 2\sin^2\theta_\ell \sin^2\theta_V \cos 2\chi H_+(q^2)H_-(q^2)\},$$
(113)

Involves three form factors $H_+(q^2)$, $H_-(q^2)$, $H_0(q^2)$ corresponding to the three possible W helicities.

The w dependence of $B \rightarrow D^* 1 \nu$ FFs.

The w dependence of $B \rightarrow D^* 1 \nu$ FFs including interference.

MC simulation of $B \rightarrow D^* l v$ Dalitz plot

CLEO: $B \rightarrow D^* l \nu$ FF analysis

Helicity amplitudes and HQET $B \rightarrow D^* 1 v FF$

$$H_0(w) = (m_B - m_{D^*}) \sqrt{\frac{m_B m_{D^*}}{q^2(w)}} (w+1) h_{A_1}(w)$$
$$\times \left[1 + \left(\frac{w-1}{1-r}\right) (1 - R_2(w)) \right]$$

$$H_{\pm}(w) = (m_B - m_{D^*}) \sqrt{\frac{m_B m_{D^*}}{q^2(w)}} (w+1) h_{A_1}(w)$$
$$\times \frac{\sqrt{1 - 2wr + r^2}}{1 - r} \Big[1 \pm \sqrt{\frac{w - 1}{w + 1}} R_1(w) \Big],$$

Measure

$$R_{1}(w) \equiv \frac{h_{V}(w)}{h_{A_{1}}(w)} = \left[1 - \frac{q^{2}}{(M + m_{V})^{2}}\right] \frac{V(q^{2})}{A_{1}(q^{2})}$$

$$R_{2}(w) \equiv \frac{h_{A_{3}}(w) + (m_{V}/M)h_{A_{2}}(w)}{h_{A_{1}}(w)}$$

$$= \left[1 - \frac{q^{2}}{(M + m_{V})^{2}}\right] \frac{A_{2}(q^{2})}{A_{1}(q^{2})}.$$

$$R_{1} = R_{2} = 1 \text{ in the infinite mass limit}$$

Measure ratios, since h_{A1} determines overall norm.

Helicity amplitudes and usual $B \rightarrow D^* l v FF$

The helicity amplitudes can, in turn, be related to the two axialvector form factors, $A_1(q^2)$ and $A_2(q^2)$, and the vector form factor, $V(q^2)$, which appear in the hadronic current (Eq. 7.47):

$$H_{0}(q^{2}) = \frac{1}{2m_{V}\sqrt{q^{2}}} [(M^{2} - m_{V}^{2} - q^{2})(M + m_{V})A_{1}(q^{2}) -4\frac{M^{2}p_{V}^{2}}{M + m_{V}}A_{2}(q^{2})]$$

$$(7.59)$$

and

$$H_{\pm}(q^2) = (M + m_V)A_1(q^2) \mp \frac{2Mp_V}{M + m_V}V(q^2).$$
(7.60)

A 4-dimensional fit is used to find the ratios $R_{1,}$, R_{2}

	$R_1(w=1)$	$R_2(w=1)$	
CLEO II Neubert Close & Wambach	$\begin{array}{c} 1.18 \pm 0.30 \pm 0.12 \\ 1.3 \pm 0.1 \\ 1.15 \end{array}$	$\begin{array}{c} 0.71 \pm 0.22 \pm 0.07 \\ 0.8 \pm 0.2 \\ 0.91 \end{array}$	to HQET
ISGW2	1.27	1.01	

Conclusions on V_{cb}

Inclusive approaches give high precision results (1.2% exp) limited by errors on OPE parameters, theory and quark-hadron duality.

$$V_{cb} = (40.4 \pm 0.5(exp) \pm 0.5(\lambda_1, \Lambda) \pm 0.8(theo)) \times 10^{-3}$$

HQET based approach to $B \rightarrow D^* l v$ gives increasingly precise measurements (2.7% exp) also limited by theory errors.

 $V_{cb} = (38.3 \pm 0.5(exp) \pm 0.9(theo)) \times 10^{-3}$

Check with complementary measures (FFs, $B \rightarrow D \mid v,...$)