Measurement of V_{cb}

Tom Browder (University of Hawaii)

Inclusive approaches
Exclusive approaches $\left(B \rightarrow D^{*} l v, B \rightarrow D l v\right)$
Moments and Form factors (if time permits)
Conclusion

The V_{cb} element of the CKM matrix

$\left(\begin{array}{lll}V u d & V_{u s} & V u b \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)=\left(\begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)$

Determination of $V_{c b}$ allows the determination of A, which is important for indirect constraints on the CKM triangle. For example, the CPV parameter ϵ_{K} is proportional to A^{4}.

Inclusive Approach to $\mathrm{b} \rightarrow \mathrm{c}$

Hadronic effects are restricted to the lower part of the graph.

Sum over all final states: only detect the final state lepton.

Inclusive Approach to $\mathrm{b} \rightarrow \mathrm{c}$ (single leptons)

ACCM model (inclusive)

ISGW** model (exclusive)

Either cut at $p_{L}^{*}>1.4 \mathrm{GeV}$ and accept large model dependence or fit: the correlation between $b \rightarrow c$ (direct) and $b->c \rightarrow s l v$ (cascade) component leads to model dependence e.g. BF: 10.42% to 10.98%

Inclusive Approach to $\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v}$ (dileptons)

To overcome this problem, ARGUS introduced a new approach using dileptons.

Idea: tag with one high momentum lepton $\mathrm{p}^{*}>1.4$ GeV (to guarantee that it is from a primary $\mathrm{b} \rightarrow \mathrm{c}$ decay). Then examine a second lepton with $\mathrm{p}^{*}>0.6 \mathrm{GeV}$.

The charge correlation (opposite for direct leptons and same for cascade leptons) eliminates correlation problem. The angular correlation between the two leptons removes the background due to leptons from the same B meson.

Application of the dilepton method to $\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v}$

Example from Belle

High momentum lepton tag:
$1.4<p_{l}<2.2 \mathrm{GeV}$
Require an additional electron (p_{e} down to 0.6 GeV)

Divide the sample into opposite/ same sign events.

Suppress secondary opposite sign leptons with $\mathrm{p}_{\mathrm{e}}+\cos \mathrm{le}>1.2$
($\cos \mathrm{le}=$ opening angle btn leptons $)$
Estimate \# of electrons by fitting E / p in momentum bins.

Application of the dilepton method to $\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v}$

$$
\binom{N_{+}\left(p^{*}\right)}{N_{++}\left(p^{*}\right)}=N_{\operatorname{tag}}\left(\begin{array}{cc}
\varepsilon_{1}(1-\chi) & \varepsilon_{1} \chi \\
\varepsilon_{2} \chi & \varepsilon_{2}(1-\chi)
\end{array}\right)\binom{\frac{d B r(b \rightarrow e v X)}{d p^{*}}}{\frac{d B r(b \rightarrow c \rightarrow e v X)}{d p^{*}}} \quad \begin{aligned}
& \chi=\chi_{0} \mathrm{f}_{00}=0.0843 \pm 0.0060 \\
& \text { mixing parameter(PDG }) \\
& \varepsilon_{1}: \text { eff. for opposite sign } \\
& \varepsilon_{2}: \text { eff. for same sign }
\end{aligned}
$$

Correct for B-Bbar mixing and the small fraction of signal (6.1\%) below 0.6 GeV .
$\mathrm{BF}(\mathrm{b} \rightarrow \mathrm{c} l v)=10.90 \pm 0.12 \pm 0.49 \%$

$\mathrm{B} \rightarrow \mathrm{c} 1 v$ with Fully Reconstructed B Tags

- Fully reconstructed hadronic B decays:

$$
\begin{aligned}
\mathrm{B} & \rightarrow \mathrm{D}^{(*)} \pi, \mathrm{D}^{(*)} \rho, \mathrm{D}^{*} \mathrm{a}_{1} \\
& \rightarrow \mathrm{~J} / \psi \mathrm{K}^{(*)}, \psi(2 \mathrm{~K}) \mathrm{K}^{(*)}
\end{aligned}
$$

Check whether spectator quark effects are important compare $B_{S L}$ for $B+$ and B^{0} decays.

BaBar: semileptonics from B tags

$N_{\text {pornot }}^{+}=597 \pm 38_{(\text {stat })}$

- Branching fractions (preliminary) :
$-\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow\right.$ X e v $)=\left(10.3 \pm 0.6_{\text {stat }} \pm 0.5_{\text {sys }}\right) \%$
$-\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{Xev}^{2}\right)=\left(10.4 \pm 0.8_{\text {stat }} \pm 0.5_{\text {sys }}\right) \%$
$B F(B \rightarrow X e v)=\left(10.4 \pm 0.5_{\text {stat }} \pm 0.5_{\text {sys }}\right) \%$
$\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{Xev}\right) / \mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{Xev}\right)=0.99 \pm 0.10_{\text {stat }} \pm 0.04_{\text {sys }}$

Determinations of $\mathrm{BF}(\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v})$

Expt.	BR	stat	syst
Cleo	10.49	± 0.17	± 0.43
Btile ($/$ Tag)	10.90	± 0.12	-0.49
BaBan (e Tag	10.87	± 0.18	± 0.30
Avmbacre	10.63	$=0.19$	± 0.16

Eid, tracking, and low p background subtractions

Expt.	BR	stat	syst	model
ALEPH	10.70	± 0.10	± 0.23	± 0.26
DELPHI	10.70	± 0.08	± 0.21	-0.44
L3	10.85	± 0.12	± 0.38	± 0.26
L3 (double tag)	10.16	± 0.13	± 0.20	± 0.22
OpAL	10.83	± 0.10	± 0.20	± 0.20
AVRIIAGE	10.63	± 0.09	± 0.15	-0.18

Good agreement between Upsilon(4S) and LEP results.

Conversion of $\mathrm{BF}(\mathrm{b} \rightarrow \mathrm{clv})$ to V_{cb}

$$
\gamma_{c}\left|V_{c} b\right|^{2} \cong \operatorname{Br}(B \rightarrow X l v) / \tau_{B}
$$

Using the Belle result

Model	$\|\mathrm{Vcb}\| \times 10^{-2}$
ACCMM	$4.10 \pm 0.10 \pm 0.40$
ISGW2	$4.00 \pm 0.10 \pm 0.40$
M.Shifman	$4.04 \pm 0.10 \pm 0.20$
P.Ball	$3.95 \pm 0.09 \pm 0.19$

This type of determination also assumes quarkhadron duality i.e. that the inclusive quark-level rate reproduces the sum of a few exclusive states $\left(B \rightarrow D l v, B \rightarrow D^{*} l v, B \rightarrow D^{* *} l v\right)$

OPE Expansion and Moments

$\Gamma_{\mathrm{sl}}=\frac{\mathrm{G}_{\mathrm{F}}^{2}\left|\mathrm{~V}_{\mathrm{cb}}\right|^{2}}{192 \pi^{3}} \mathrm{~m}_{\mathrm{B}}^{5} \mathrm{c}_{1}\left\{1-\mathrm{c}_{2} \frac{\alpha_{\mathrm{s}}}{\pi}+\frac{\mathrm{c}_{3}}{\mathrm{~m}_{\mathrm{B}}} \bar{\Lambda}\left(1-\mathrm{c}_{4} \frac{\alpha_{\mathrm{s}}}{\pi}\right)+\frac{\mathrm{c}_{5}}{\mathrm{~m}_{\mathrm{B}}^{2}}\left(\bar{\Lambda}^{2}+\mathrm{c}_{6} \lambda_{1}+\mathrm{c}_{7} \lambda_{2}\right)\right.$

$$
\left.+O\left(\frac{1}{\mathrm{~m}_{\mathrm{B}}^{3}}\right)+O\left(\frac{\alpha_{\mathrm{s}}^{2}}{\pi}\right) \cdots\right\}
$$

$\Lambda, \lambda_{1}, \lambda_{2}$ are non-perturbative parameters.
$\lambda_{1} \quad(-)$ kinetic energy of the b-quark (a.k.a μ_{π}^{2})
λ_{2} hyperfine splitting from B^{*} - B mass difference, λ_{2} $=0.12 \mathrm{GeV}^{2}$ (a.k.a $\mu_{\mathrm{C}}{ }^{2}$)
$\Lambda=m_{\mathrm{B}}-\mathrm{m}_{\mathrm{b}}+\left(\lambda_{1}-3 \lambda_{2}\right) / 2 \mathrm{~m}_{\mathrm{B}} \ldots$ (energy of "light DOF")
-Additional parameters enter at higher orders $\left(\rho_{1}, \rho_{2}, \tau_{1}, \tau_{2}\right.$, τ_{3}, τ_{4}); use theoretical estimates
$\Lambda, \lambda_{1}, \lambda_{2}$ are the main sources of theoretical uncertainty in inclusive $V_{c b}$ (calibrate γ_{c}).

Conversion of $\mathrm{BF}(\mathrm{b} \rightarrow \mathrm{cl} \mathrm{v})$ to $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Idea: The non-perturbative parameters Λ, λ_{1},

 λ_{2} can be determined from other experimental measurements.$\mathrm{b} \rightarrow \mathrm{s} \gamma$ photon energy moments, $\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v}$ lepton energy moments, and $\mathrm{b} \rightarrow \mathrm{c} 1 \mathrm{v}$ hadronic mass moments.

$$
\begin{aligned}
& \text { For example: }<E_{\gamma}>\text { and } \\
& \left\langle E_{\gamma}>^{2}-\left\langle E_{\gamma}{ }^{2}>\text { in } b \rightarrow s \gamma\right.\right.
\end{aligned}
$$

BaBar: Moments of the M_{x} Distribution

Binned χ^{2} fit to $\mathrm{M}_{\mathbf{X}}$ Distribution: 4 Contributions $D=f_{D} P_{D}+f_{D^{*}} P_{D^{*}}+f_{H X} P_{H X}+f_{B G}($ fixed $) P_{B G}$

OPE parameters determined from two sets of moments:

$\Lambda=0.35 \pm 0.07 \pm 0.10 \mathrm{GeV}, \lambda_{1}=0.236 \pm 0.071 \pm 0.078 \mathrm{GeV}^{2}$

BaBar: Problem with E_{L} cut dependence of moments.

Using the measured OPE parameters, can determine a more precise V_{cb} value.

$$
\mathrm{V}_{\mathrm{cb}}=\left(40.4 \pm 0.5(\exp) \pm 0.5\left(\lambda_{1}, \Lambda\right) \pm 0.8 \text { (theo) }\right) \times 10^{-3}
$$

V_{cb} from $\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v$ at zero recoil

The differential rate for $B \rightarrow D^{(*)} l v$ at zero recoil is related to $V c b$:

$$
\frac{d \Gamma}{d \omega} \propto\left|V_{c b}\right|^{2} F_{D^{(+)}}^{2}(\omega)
$$

ω : relativistic γ factor of the D^{*} in the B rest frame $\left(\omega=\mathrm{E}_{\mathrm{D}^{*}} / \mathrm{m}_{\mathrm{D}^{*}}\right)$
$\omega=\mathrm{v} \cdot \mathrm{v}^{\prime}$, the dot product of B and $\mathrm{D}^{(*)} 4$-velocities.
Other notations are used including: w, y

$$
\omega=\left(m_{B}^{2}+m_{D^{*}}^{2}-q^{2}\right) \frac{1}{2 m_{B} m_{D^{*}}}
$$

V_{cb} from $\mathrm{B} \rightarrow \mathrm{D}^{(*)} 1 v$ at zero recoil

$$
\frac{d \Gamma}{d \omega} \propto\left|V_{c b}\right|^{2} F_{D^{(\omega)}}{ }^{2}(\omega)
$$

In the zero-recoil configuration, HQET symmetry implies $F(\omega=1)=1$ with small theoretical corrections.

Luke's theorem: the corrections to 1 are $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}{ }^{2}\right)$ for $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 v$ in HQET . From models and lattice, $\mathrm{F}(1)=0.91 \pm 0.04$ (PDG)

Initial B meson

(a)

Light degrees of freedom are not disturbed $\rightarrow \mathrm{F}(1)=1$

$\omega=1.5$

V_{cb} from $\mathrm{B} \rightarrow \mathrm{D}^{(*)} 1 v$ at zero recoil (theory)

	$\begin{gathered} \text { and } \\ \text { stat } \end{gathered}$	$\begin{aligned} & \text { maten } \\ & \text { matah } \end{aligned}$	$\begin{aligned} & 10 \\ & a \end{aligned}$	$\begin{aligned} & \text { Wow } \\ & m_{q} \end{aligned}$	

State of the art Lattice calculation from Kronfeld et al.

Theory uncertainties still at the 3-4\% level

Experimental issues for zero recoil:

The D^{*} is nearly at rest i.e. slow pion from
$D^{*} \rightarrow D \pi$ has a very low momentum.

But at LEP eff is flat.

Rate is proportional to $\mathrm{p}_{\mathrm{D}^{*}}$. (At zero recoil there is no rate). Measure the rate near zero recoil, then assume a
functional form for $F(\omega)$ and extrapolate.

CLEO 2002: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} 1 v$ signals

FIG. 1. The candidate yields for $1.10<w<1.15$ bin with the results of the fit superimposed for (a) $D^{*+} \ell^{-} \bar{\nu}$ and for (b) $D^{* 0} \ell^{-} \bar{\nu}$. The fit uses the region between the arrows.

$$
\cos \theta_{B-X l} \equiv \frac{2 E_{B} E_{X l}-M^{2}{ }_{B}-M^{2}{ }_{X l}}{2\left|\vec{p}_{B}\right| \vec{p}_{X l} \mid}
$$

$\left|\cos _{\mathrm{B}-\mathrm{XI}}\right|<1$ if X and lepton come from signal

CLEO 2002: V_{cb} from $\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v$ at zero recoil

Note higher efficiency near $w \sim 1$

Use both $D^{*+} \rightarrow D^{0} \pi^{+}$ and $D^{* 0} \rightarrow D^{0} \pi^{0}$

Belle: Sensitivity of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ to FF parameterization.

$\left|\mathrm{V}_{\mathrm{cb}}\right| \mathrm{F}(1)$ 0.0342-0.0358
$\rightarrow \mathrm{V}_{\mathrm{cb}}$ range 5%

Summary of fit results according to different form factor (FF) parameterizations,
where the errors are statistical only. Our main analysis uses values of $R_{1}(1), R_{2}(1)$
from QCD sum rules.

FF shape \& $R_{1}(1), R_{2}(1)$	$\left\|V_{c b}\right\| F(1) \cdot 10^{2}$	$\rho_{A_{1}}^{2}$	ρ_{F}^{2}	$\mathcal{B}\left(\overline{B^{0}} \rightarrow D^{*+} e^{-} \bar{\nu}\right)$	χ^{2} / ndf
Dispersive \& QCD sum rules	3.54 ± 0.19	1.35 ± 0.17	.	$(4.59 \pm 0.23) \%$	$3.38 / 8$
Dispersive \& CLEO value	3.58 ± 0.19	1.45 ± 0.16	.	$(4.60 \pm 0.23) \%$	$3.79 / 8$
Linear \& Heavy quark limit	3.42 ± 0.17	.	0.81 ± 0.12	$(4.57 \pm 0.24) \%$	$2.23 / 8$

$B \rightarrow D^{*} l v$ Form Factor Parametrization Issues I

$$
\frac{d \Gamma\left(B \rightarrow D^{*} l v\right)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}} M_{D^{*}}^{3}\left(M_{B}-M_{D^{*}}\right)^{2} \sqrt{w^{2}-1}(w+1)^{2} g(w)\left|V_{c b}\right|^{2} F_{D^{*}}^{2}(w)
$$

where $g(w)=\left[1+\frac{4 w}{(1+w)} \frac{1-2 w r+r^{2}}{(1-r)^{2}}\right], r=M_{D^{*}} / M_{B}$

First round of measurements assumed a linear functional form for $F(y)$.

$$
F(\omega)=F(1)\left[1-\rho^{2}(\omega-1)+O\left(\omega^{2}\right)\right]
$$

$\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \vee$ Form Factor Parametrization Issues II

$$
\frac{d \Gamma\left(B \rightarrow D^{*} l v\right)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}} M_{D^{*}}^{3}\left(M_{B}-M_{D^{*}}\right)^{2} \sqrt{w^{2}-1}(w+1)^{2} g(w)\left|V_{c b}\right|^{2} F_{D^{*}}^{2}(w)
$$

Using the axial vector form factor $\mathrm{A}_{1}(\mathrm{y})$, form factor ratios $\mathrm{R}_{1}(\mathrm{y})$ and $\mathrm{R}_{2}(\mathrm{y})$

$$
g(w) F_{D^{*}}^{2}(w)=\left[2\left(\frac{1-2 w r+r^{2}}{(1-r)^{2}}\right)\left(1+R_{1}^{2}(w) \frac{w-1}{w+1}\right)+\left(1+\left(1-R_{2}(w)\right) \frac{w-1}{1-r}\right)^{2}\right] A_{1}^{2}(w)
$$

Dispersion relations give model-independent bounds on form factors
(Caprini, NP B530 (1998))

$$
\begin{aligned}
& \mathrm{R}_{1}(\mathrm{w}) \sim \mathrm{R}_{1}(1)-0.12(\mathrm{w}-1)+0.05(\mathrm{w}-1)^{2} \\
& \mathrm{R}_{2}(\mathrm{w}) \sim \mathrm{R}_{2}(1)-0.11(\mathrm{w}-1)-0.06(\mathrm{w}-1)^{2} \\
& \mathrm{~A}_{1}(\mathrm{w}) \sim \mathrm{A}_{1}(1)\left[1-8 r^{2} \mathrm{z}+\left(53 r^{2}-15\right) \mathrm{z}^{2}-\left(231 r^{2}-91\right) \mathrm{z}^{3}\right]
\end{aligned}
$$

$$
z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

V_{cb} from the end point of $\mathrm{B}->\mathrm{D}^{(*)} 1 \mathrm{v}$

Note strong $\mathrm{V}_{\mathrm{cb}}, \rho^{2}$ correlation

experiment	$\mathcal{F}(1)\left\|V_{\mathrm{cb}}\right\|\left(\times 10^{3}\right)$	ρ^{2}	Corr $_{\text {stat }}$
ALEPH	$33.8 \pm 2.1 \pm 1.6$	$0.74 \pm 0.25 \pm 0.41$	94%
DELPHI	$36.1 \pm 1.4 \pm 2.5$	$1.42 \pm 0.14 \pm 0.37$	94%
OPAL	$38.5 \pm 0.9 \pm 1.8$	$1.35 \pm 0.12 \pm 0.31$	89%
Belle	$36.0 \pm 1.9 \pm 1.8$	$1.45 \pm 0.16 \pm 0.20$	90%
CLEO	$43.3 \pm 1.3 \pm 1.8$	$1.61 \pm 0.09 \pm 0.21$	86%
World average	$38.3 \pm 0.5 \pm 0.9$	$1.51 \pm 0.05 \pm 0.12$	86%

Artuso and Barbieri.

Exp error is only 2.7%, limited by theory

Uncertainty in B $->\mathrm{D}^{* *} 1 v$ background

Explains the difference between CLEO and other results.

$\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{D}^{*} \pi \mathrm{l} v\right)=(0.64 \pm 0.08 \pm 0.09) \%$

$\mathrm{B} \rightarrow \mathrm{D} 1 v$ versus $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 v$ for V_{cb}

$(+)$ Detection efficiency for $B \rightarrow D$ is higher than $B \rightarrow D^{*}$ (no slow π).
$(-)$ Background is worse for $B \rightarrow D$ (no D^{*} mass constraint) .
$(-) B \rightarrow D$ lv has a $p_{D}{ }^{3}$ suppression while $B \rightarrow D^{*} l v$ has only a $p_{D^{*}}$ suppression
$(-) L u k e$'s theorem does not apply to $\mathrm{B} \rightarrow \mathrm{D} 1 v$. There are $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$ corrections. (See Ligeti's talk).

Variables for exclusive semileptonic analysis via v reconstruction (used for $B \rightarrow D l v$)

$$
\begin{aligned}
& p_{\text {miss }}=-\sum p_{i} \\
& E_{\text {miss }}=2 E_{\text {beam }}-\sum E_{i} \\
& M^{2}{ }_{\text {miss }}=E^{2}{ }_{\text {miss }}-P^{2_{\text {miss }}} \\
& p_{v}=\left(p_{\text {miss }},\left|p_{\text {miss }}\right|\right)
\end{aligned}
$$

Can then form $\Delta \mathrm{E}$ and M_{B}

$$
\begin{aligned}
& \Delta E \equiv E_{\text {beam }}-\left(E_{\pi}+E_{l}+E_{v}\right) \\
& M_{B} \equiv \sqrt{E_{\text {beam }}^{2}-\left|p_{\pi}+p_{l}+p_{v}\right|^{2}}
\end{aligned}
$$

where Ebeam $=5.29 \mathrm{GeV}$

Belle: $\mathrm{B} \rightarrow \mathrm{D} \mid v$

Signal :1099 ± 57
Corr: 983 ± 22
Uncorr: 35 ± 4
Fakes: 9 ± 1
Cont: 43 ± 7

Belle: $\mathrm{B} \rightarrow \mathrm{D} \mid v$

Note high efficiency but large backgrounds.

Results on $V_{c b}$ and ρ^{2} from $B \rightarrow D^{(*)} 1 v$

$$
B^{0}->D^{-} l^{+} v
$$

All using a linear model

$F(1)\left|V_{c b}\right| \times 10^{2}$

$$
B^{0}->D^{*-} l^{+} v
$$

All using a dispersion relation

$F(1)\left|V_{c b}\right| \times 10^{2}$

Test HQET: $\mathrm{B} \rightarrow \mathrm{D} 1 v$ versus $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 v$

From the results of $\bar{B}^{0} \rightarrow D^{*+} e^{-\bar{\nu}}$ analysis at Belle, the ratio of $F_{D}(1)$ and $F_{D^{*}}(1)$ and the difference between $\hat{\rho}_{D}^{2}$ and $\hat{\rho}_{D^{*}}^{2}$ are measured to be

$$
\begin{aligned}
& \frac{F_{D}(1)}{F_{D^{*}}(1)}=\left\{\begin{array}{l}
1.12 \pm 0.12 \pm 0.12 \text { (Linear form factor) } \\
1.16 \pm 0.14 \pm 0.12 \text { (Caprini } \text { et al. form factor) }
\end{array}\right. \\
& \hat{\rho}_{D}^{2}-\hat{\rho}_{D^{*}}^{2}=\left\{\begin{array}{l}
-0.12 \pm 0.18 \pm 0.13 \text { (Linear form factor) } \\
-0.23 \pm 0.29 \pm 0.20 \text { (Caprini } \text { et al. form factor) },
\end{array}\right.
\end{aligned}
$$

The size of $O\left(1 / m_{Q}\right)$ corrections is not large.

With more data, we will start to observe these corrections to HQET.

Motivation for $\mathrm{B} \rightarrow \mathrm{D}^{(*)} 1 v$ form factor analysis

> HQET which is used to extract $V_{c b}$ also predicts ratios of form factors.

Form factors are a major source of uncertainty in $\left|V_{u b}\right|$ analysis.

Imagine $\mathrm{B} \rightarrow \mathrm{D} 1 v$ and $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 v$ as two body $\mathrm{B} \rightarrow \mathrm{D} W$ and $\mathrm{D}^{*} \mathrm{~W}$ decays. The first is a p-wave while the latter can be either a s, p or d-wave

Definition of angles for $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \nu \mathrm{FF}$ analysis

Fig. 34. Definition of the angles $\theta_{V}, \theta_{\ell}$, and χ in the decay $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}$. (These angles are used for any $P \rightarrow V \ell \nu$ in which the vector meson decays into two pseudoscalars.) The lepton and neutrino are drawn back to back because they are shown in the W^{*} rest frame. Similarly, the D and the π are shown in the D^{*} rest frame. The angle θ_{ℓ} is thus measured in the W rest frame, while θ_{V} is measured in the D^{*} rest frame. The azimuthal angle χ is measured between the W and D^{*} decay planes. In the literature, the angle θ_{ℓ} is sometimes defined as the direction between the charged lepton and the recoiling vector meson, measured in the $\ell \nu$ rest frame.

Differential rate for $B \rightarrow D^{*} 1 v$

The differential decay rate for $P(Q \bar{q}) \rightarrow V\left(q^{\prime} \bar{q}\right) \ell^{-} \bar{\nu}, V \rightarrow P_{1} P_{2}$ can be expressed in terms of these four kinematic variables $q^{2}, \theta_{\ell}, \theta_{V}$ and χ (Gilm90, Korn90b):

$$
\begin{align*}
\frac{d \Gamma\left(P \rightarrow V \ell \nu, V \rightarrow P_{1} P_{2}\right)}{d q^{2} d \cos \theta_{V} d \cos \theta_{\ell} d \chi} & =\frac{3}{8(4 \pi)^{4}} G_{F}^{2}\left|V_{q^{\prime}}\right|^{2} \frac{p_{V} q^{2}}{M^{2}} \mathcal{B}\left(V \rightarrow P_{1} P_{2}\right) \\
& \times\left\{\left(1-\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\left(1+\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{-}\left(q^{2}\right)\right|^{2} \\
& +4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{V}\left|H_{0}\left(q^{2}\right)\right|^{2} \\
& -4 \eta \sin \theta_{\ell}\left(1-\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \chi H_{+}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& +4 \eta \sin \theta_{\ell}\left(1+\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \chi H_{-}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& \left.-2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{V} \cos 2 \chi H_{+}\left(q^{2}\right) H_{-}\left(q^{2}\right)\right\}, \tag{113}
\end{align*}
$$

Involves three form factors $H_{+}\left(q^{2}\right), H_{-}\left(q^{2}\right), H_{0}\left(q^{2}\right)$ corresponding to the three possible W helicities.

The w dependence of $B \rightarrow D^{*} 1 v$ FFs.

The w dependence of $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \vee \mathrm{FFs}$ including interference.

Interference terms integrate to zero

MC simulation of $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \vee$ Dalitz plot

CLEO: $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \vee \mathrm{FF}$ analysis

Interference term $\mathrm{H}_{-1,-1} \mathrm{H}_{00}$

Helicity amplitudes and HQET B $\rightarrow \mathrm{D}^{*} 1 v \mathrm{FF}$

$$
\begin{aligned}
H_{0}(w) & =\left(m_{B}-m_{D^{*}}\right) \sqrt{\frac{m_{B} m_{D^{*}}}{q^{2}(w)}}(w+1) h_{A_{1}}(w) \\
& \times\left[1+\left(\frac{w-1}{1-r}\right)\left(1-R_{2}(w)\right)\right]
\end{aligned}
$$

$$
H_{ \pm}(w)=\left(m_{B}-m_{D^{*}}\right) \sqrt{\frac{m_{B} m_{D^{*}}}{q^{2}(w)}}(w+1) h_{A_{1}}(w)
$$

$$
\times \frac{\sqrt{1-2 w r+r^{2}}}{1-r}\left[1 \mp \sqrt{\frac{w-1}{w+1}} R_{1}(w)\right]
$$

$$
\begin{aligned}
R_{1}(w) & \equiv \frac{h_{V}(w)}{h_{A_{1}}(w)}=\left[1-\frac{q^{2}}{\left(M+m_{V}\right)^{2}}\right] \frac{V\left(q^{2}\right)}{A_{1}\left(q^{2}\right)} \\
R_{2}(w) & \equiv \frac{h_{A_{3}}(w)+\left(m_{V} / M\right) h_{A_{2}}(w)}{h_{A_{1}}(w)} \\
& =\left[1-\frac{q^{2}}{\left(M+m_{V}\right)^{2}}\right] \frac{A_{2}\left(q^{2}\right)}{A_{1}\left(q^{2}\right)}
\end{aligned}
$$

$\mathrm{R}_{1}=\mathrm{R}_{2}=1$ in the infinite mass limit

Measure ratios, since $\mathrm{h}_{\mathrm{A} 1}$ determines overall norm.

Helicity amplitudes and usual $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 v \mathrm{FF}$

The helicity amplitudes can, in turn, be related to the two axialvector form factors, $A_{1}\left(q^{2}\right)$ and $A_{2}\left(q^{2}\right)$, and the vector form factor, $V\left(q^{2}\right)$, which appear in the hadronic current (Eq. 7.47):

$$
\begin{align*}
H_{0}\left(q^{2}\right)= & \frac{1}{2 m_{V} \sqrt{q^{2}}}\left[\left(M^{2}-m_{V}^{2}-q^{2}\right)\left(M+m_{V}\right) A_{1}\left(q^{2}\right)\right. \\
& \left.-4 \frac{M^{2} p_{V}^{2}}{M+m_{V}} A_{2}\left(q^{2}\right)\right] \tag{7.59}
\end{align*}
$$

and

$$
\begin{equation*}
H_{ \pm}\left(q^{2}\right)=\left(M+m_{V}\right) A_{1}\left(q^{2}\right) \mp \frac{2 M p_{V}}{M+m_{V}} V\left(q^{2}\right) \tag{7.60}
\end{equation*}
$$

CLEO

A 4-dimensional fit is used to find the ratios R_{1}, R_{2}

	$R_{1}(w=1)$	$R_{2}(w=1)$
CLEO II	$1.18 \pm 0.30 \pm 0.12$	$0.71 \pm 0.22 \pm 0.07$
Neubert	1.3 ± 0.1	0.8 ± 0.2
Close \&	1.15	0.91
Wambach		
ISGW2	1.27	1.01

Test corrections to HQET

Conclusions on V_{cb}

Inclusive approaches give high precision results (1.2% exp) limited by errors on OPE parameters, theory and quark-hadron duality.
$\mathrm{V}_{\mathrm{cb}}=\left(40.4 \pm 0.5(\exp) \pm 0.5\left(\lambda_{1}, \Lambda\right) \pm 0.8\right.$ (theo) $) \times 10^{-3}$
HQET based approach to $B \rightarrow D^{*} l v$ gives increasingly precise measurements (2.7% exp) also limited by theory errors.

$$
\mathrm{V}_{\mathrm{cb}}=(38.3 \pm 0.5(\exp) \pm 0.9(\text { theo })) \times 10^{-3}
$$

Check with complementary measmts (FFs, B \rightarrow D $1 v, .$.)

