Measurement of $|V_{ub}|$

Tom Browder (University of Hawaii)

Inclusive approaches (endpoint, M_X , q^2) Exclusive approaches ($B \rightarrow \pi 1 \nu$, $B \rightarrow \rho 1 \nu$) Conclusion

The V_{ub} element of the CKM matrix $\begin{pmatrix} Vud & Vus & Vub \\ Vcd & Vcs & Vcb \\ Vtd & Vts & Vtb \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$

 $|V_{ub}|$ determines a circle of radius² = $\rho^2 + \eta^2$ for the apex of the Bjorken triangle. *Very important for indirect constraints on the CKM triangle and for detecting New Physics.*

How are $|V_{ub}|$ measurements different from $|V_{cb}|$ measurements?

Cannot observe the whole spectrum of $b \rightarrow u \ v$ unlike $b \rightarrow c \ v$. Backgrounds are too large hence restricted to small portions of phase space.

Heavy \rightarrow light FF not Heavy \rightarrow Heavv FF: very little simplification from HQET. W or q^2 range is much larger (dependence on FF is much greater).

$|V_{ub}|$ from the Lepton Endpoint

A large theoretical extrapolation is required to obtain |Vub|

CLEO 2001: $|V_{ub}|$ from leptons beyond the b \rightarrow c endpoint

BABAR 2002: $|V_{ub}|$ from leptons beyond the endpoint

Agrees well with CLEO $(0.143\pm0.010\pm0.014) \times 10^{-3}$

Model Dependence in $|V_{ub}|$ from inclusive decay.

CLEO 1993: Model dependence

TABLE IV. Partial branching fractions and corresponding values of $|V_{ub}/V_{cb}|^2$ and $|V_{ub}/V_{cb}|$ for the strict-cut analysis in the momentum interval 2.3 to 2.6 GeV/c.

Model	$10^6 \Delta B_{ub}(p)$	$10^2 V_{ub}/V_{cb} ^2$	$\left V_{ub}/V_{cb} ight $
ISGW	$121 \pm 17 \pm 15$	1.02 ± 0.20	0.101 ± 0.010
KS	$115 \pm 16 \pm 15$	0.31 ± 0.06	0.056 ± 0.006
WSB	$122 \pm 17 \pm 16$	0.53 ± 0.11	0.073 ± 0.007
ACCMM	$154 \pm 22 \pm 20$	0.57 ± 0.11	0.076 ± 0.008

CLEO 2001, BABAR 2002: No longer use a model for extrapolation. Instead rely on the $b \rightarrow s \gamma$ shape function..

(Discussed in lectures by Ligeti) $B \rightarrow \text{light quark shape function, SAME (to lowest order in <math>\Lambda_{OCD}/m_b$) for $b \rightarrow s \gamma$ ($B \rightarrow X_s \gamma$) and $b \rightarrow u \ln (B \rightarrow X_u \ln)$.

Convolute with light cone shape function.

Fraction of $b \rightarrow u\ell v$ spectrum above 2.2 is 0.13 ± 0.03

Extrapolation from endpoint region using $b \rightarrow s \gamma$ *Idea: Use the shape function in* $b \rightarrow s \gamma$ *to determine the* $b \rightarrow u l v$ *shape function. Then get the fraction of events in the* $b \rightarrow u l v$ *endpoint region.*

V_{ub} Extrapolation from endpoint region using b \rightarrow s γ

TABLE II: Results for five momentum intervals. Uncertainties on yields, f_u , and branching fractions are statistical and systematic. The first uncertainty on the total branching fraction is from the measurement of $\Delta \mathcal{B}_u(p)$ and the second is from f_u . The first two uncertainties on $|V_{ub}|$ are from the branching fraction and the third and fourth are from theory.

$p \; (\text{GeV}/c)$	Yield	$\Delta \mathcal{B}_u(p)(10^{-4})$	f_u	$\mathcal{B}(B \to X_u \ell \nu) \ (10^{-3})$	$ V_{ub} (10^{-3})$
2.0-2.6	${\bf 3538 \pm 279 \pm 1470}$	$4.22 \pm 0.33 \pm 1.78$	$0.266 \pm 0.041 \pm 0.024$	$1.59 \pm 0.68 \pm 0.28$	$3.87 \pm 0.83 \pm 0.35 \pm 0.15 \pm 0.12$
2.1 - 2.6	$2751\pm191\pm584$	$3.28 \pm 0.23 \pm 0.73$	$0.198 \pm 0.035 \pm 0.020$	$1.66 \pm 0.39 \pm 0.34$	$3.95 \pm 0.46 \pm 0.40 \pm 0.16 \pm 0.16$
2.2 - 2.6	$1901\pm122\pm256$	$2.30 \pm 0.15 \pm 0.35$	$0.130 \pm 0.024 \pm 0.015$	$1.77 \pm 0.29 \pm 0.38$	$4.08\pm0.34\pm0.44\pm0.16\pm0.24$
2.3 - 2.6	$1152\pm80\pm61$	$1.43 \pm 0.10 \pm 0.13$	$0.074 \pm 0.014 \pm 0.009$	$1.94 \pm 0.22 \pm 0.43$	$4.27 \pm 0.24 \pm 0.47 \pm 0.17 \pm 0.34$
2.4 - 2.6	$499\pm57\pm14$	$0.64 \pm 0.07 \pm 0.05$	$0.037 \pm 0.007 \pm 0.003$	$1.74\pm0.24\pm0.38$	$4.05\pm0.28\pm0.45\pm0.16\pm0.45$

Optimal interval is
$$2.2 < p_L < 2.6 \text{ GeV}$$

 $BF(2.2-2.6 \text{ GeV}) = (2.30\pm0.15\pm0.35) \times 10^{-4}$

 $f_u (2.2-2.6 \text{ GeV}) = 0.130 \pm 0.024 \pm 0.05$

$$|V_{ub}| = (3.07 \pm 0.12) \times 10^{-3} \times \left[\frac{\mathcal{B}(B \to X_u e\nu)}{0.001} \frac{1.6 \text{ ps}}{\tau_B}\right]^{\frac{1}{2}}$$

CLEO: $|V_{ub}|$ from Lepton Endpoint (using $b \rightarrow s\gamma$)

 $|Vub| = (4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24) \times 10^{-3}$

stat $b \rightarrow s \gamma$ Γ theory Λ/M_B theory

Subleading
 corrections large
 C. Bauer, M. Luke, T. Mannel
 A. Leibovich, Z. Ligeti, M. Wise

 Method for partial inclusion of subleading corrections: Neubert

Quark-hadron duality ?

How can we improve our knowledge of $|V_{ub}|$ from inclusive decays ?

Use all of phase space (LEP)

Use favorable regions of M_X or q^2 (DELPHI, CLEO) and new theoretical strategies

Fraction with $E_L > 2.2 \text{ GeV} (\sim 15\%)$; fraction with $M_X < M_D (\sim 70\%)$, fraction with $q^2 > (M_B - M_D)^2 (\sim 20\%)$

ALEPH $|V_{ub}|$ Measurement

20 kinematic variables in a NN

OPAL $|V_{ub}|$ Measurement

Huge background suppressed with 7 variable Neural Net Small signal extraction depends on $b \rightarrow c\ell\nu$ model! S/B = 0.05

Published Inclusive |Vub| Determinations

			., –		
Exp.	Method	S/B	$ V_{ub} \ [10^{-3}]$	$\sigma_{b \to c} \\ (V_{ub})$	$\sigma_{th} \ (V_{ub})$
ALEPH	Neural Net	0.07	$4.12 \pm .67 \pm .62 \pm 0.35$	15%	9%
OPAL	Neural Net	0.05	$4.00 \pm .71 \pm .59 \pm 0.40$	15%	10%
DELPHI	M_X	0.10	$4.07 \pm .65 \pm .47 \pm 0.39$	12%	10%
L3	$\pi - \ell \operatorname{Cut}$	0.22	$5.7 \pm 1.0 \pm 1.3 \pm 0.5$	22%	10%
LEP	Average		$4.09 \pm 0.37 \pm 0.44 \pm 0.34$		9–15%
CLEO	E_ℓ endpoint	0.39	$4.12 \pm 0.34 \pm 0.44 \pm 0.33$	7%	10–15%

Battaglia and Gibbons

LEP

Hadronic Invariant Mass Spectrum for b→u Decay

- singularity is smeared out by b quark light-cone distribution function $f(k_+)$
- rate is sensitive to details of $f(k_+)$ unless $m_X^2 >> \Lambda_{QCD} m_b$ (bad for $m_X < m_D!$) introduces model dependence unless we know $f(k_+)$

DELPHI 2000: Analysis with $M_X < 1.6 \text{ GeV}$

 $|V_{ub}| = (4.07 \pm 0.65(exp) \pm 0.47(b \rightarrow c) \pm 0.39(theo)) \times 10^{-3}$

Lepton Invariant Mass Spectrum for b u Decay

Lepton q² spectrum is insensitive to Fermi motion (and has less model dependence.)

	Representative cuts:			
	(a) $q^2 > 6 \text{ GeV}^2$, $m_X <$	m_D	46% of rate	
M.Luke:	(b) $q^2 > 8 \text{ GeV}^2$, $m_X <$	1.7 GeV	33% of rate	
	(c) $q^2 > 11 \text{ GeV}^2, m_X <$	1.5 GeV	18% of rate	
Uncertaint	y Size (in V_{ub})	Improven	nent?	
Δm_b	±80 MeV: 7%, 8%, 10%	RG improv spectra, lat	ved Υ sum rules, moments of <i>B</i> d ttice	lecay
	3%, 3%, 4%			
$lpha_{_S}$	2%, 3%, 7%	full two-lo	oop calculation	
$1/m_b^3$ (weak annihi	3%, 4%, 8% lation)	compare <i>B</i> compare S	B^{\pm} , B^0 S.L. width of D^0 , D_S , lattice	

CLEO: $B \rightarrow X I_V$ with Neutrino Reconstruction

 $|V_{ub}| = (4.05 \pm 0.18 \pm 0.58 \pm 0.25 \pm 0.21 \pm 0.56) \ 10^{-3}$ stat sys b > c b > u theory

 $|V_{ub}|$ from M_X or q² with fully reconstructed B tags (MC)

FIG. 1: (a) Hadronic mass (m_{had}) distribution for 1000 fb^{-1} data found with CLEO III fast MC. The solid histogram is the m_{had} distribution of $b \to u\ell\nu$, and the dashed histogram is the m_{had} distribution of $b \to c\ell\nu$. (b) q^2 distribution for 1000 fb^{-1} data found with CLEO III fast MC. The solid histogram is the q^2 distribution of $b \to u\ell\nu$, and the dashed histogram is the q^2 distribution of $b \to c\ell\nu$.

		$m_{ m had}$				q^2					
year	$\mathcal{L}_{int}(fb^{-1})$	S	B	$\delta \mathrm{V}^{\mathrm{e}}_{\mathrm{u}}$	xpt. .b ((%)	S	B	$\delta \mathrm{V}^{\mathrm{e}}_{\mathrm{u}}$	хрt. .b ((%)
				stat.	sys.	$\mathbf{tot.}$			stat.	sys.	tot.
2002	100	335	127	3.2	2.2	3.9	127	7	4.6	3.0	5.5
2005	500	1675	635	1.5	1.5	2.1	635	36	2.0	1.2	2.3
2010	2000	6700	2540	0.7	1.5	1.7	2538	144	1.0	1.2	1.6

Shipsey andLee

Exclusive Approaches to $|V_{ub}|$

Measure $BF(B \rightarrow \pi l v)$, $BF(B \rightarrow \rho l v)$ or $BF(B \rightarrow \omega l v)$.

With more statistics, can then measure $d\Gamma/dq^2$ ($B \rightarrow \pi l v$) or even form factors for $BF(B \rightarrow \rho l v)$.

A key experimental ingredient is the use of detector hermiticity to deduce the v momentum

Variables for v reconstruction of exclusive semileptonic decays (used for $B \rightarrow \pi(\rho) l v$)

$$p_{miss} = -\sum p_{i}$$

$$E_{miss} = 2 E_{beam} - \sum E_{i}$$

$$M^{2}_{miss} = E^{2}_{miss} - P^{2}_{miss}$$

$$p_{v} = (p_{miss}, |p_{miss}|)$$

$$\Delta E \equiv E_{beam} - (E_{\pi} + E_l + E_{\nu})$$
$$M_B \equiv \sqrt{E^2_{beam} - |p_{\pi} + p_l + p_{\nu}|^2}$$

where Ebeam = 5.29 GeV

Detector hermiticity requirements (cont'd)

e.g. Only one lepton and $|Q_{tot}| = \pm 2$. Also require $|M_{miss}|^2 < 3.0 \text{ GeV}^2$

Fiducial cut on p_{miss} is important at the B factories. E.g. $17^0 < \theta_{miss} < 150^0$

Belle: $B^0 \rightarrow \pi^+ l^- \nu$ signal

 ΔE

Signal is extracted from a 2D fit to ΔE and p_L

Determination of $|V_{ub}|$ from BF(B⁰ $\rightarrow \pi 1 \nu$)

Models or lattice calculations are needed to determine detection efficiency as well as convert the BF into a value of $|V_{ub}|$

		(Khodjamirian <i>et al</i> .)
model	UKQCD	LCSR
Reference	PLB 486, 111 (2000)	PRD 62, 114002 (2000)
good for	large q^2	small q^2
γ_{π}	9^{+3+2}_{-2-2}	7.3 ± 2.5
effi. (%)	2.9	3.1
$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell)$	$(1.35\pm0.11\pm0.21)\times10^{-4}$	$(1.31\pm0.11\pm0.20)\times10^{-4}$
$ V_{ub} $	$(3.11 \pm 0.13 \pm 0.24 \pm 0.56) \times 10^{-3}$	$(3.58 \pm 0.15 \pm 0.28 \pm 0.63) \times 10^{-3}$

CLEO:Determination of $|V_{ub}|$ from BF(B⁰ $\rightarrow \pi l \nu$)

 q^2 distribution of $B \rightarrow \pi l V$

BABAR B $\rightarrow \rho^{0(+)}$ l v signal

LOLEP

Figure 3: Continuum-subtracted projections of the ISGW2 fit result for the $B^+ \rightarrow \rho^0 e^+$ channels in the LOLEP and HILEP electron energy regions; the contributions are the direc and crossfeed components of the signal (unhatched region, above and below the dashed line respectively); the background from $b \to ue\nu$ other than $B \to \rho e\nu$ and $B \to \omega e\nu$ modes (double hatched region); the background from $b \rightarrow ce\nu$ and other backgrounds (single-hatched region)

BABAR B $\rightarrow \rho^{0(+)}$ l v signal

HILEP

2.3<p₁ <2.7 GeV

LOLEP 2.0<p_L<2.3 GeV

Table 2: Summary of data yields for the $B^0 \to \rho^- e^+ \nu$ and $B^+ \to \rho^0 e^+ \nu$ modes with electron energies between 2.3 and 2.7 GeV (HILEP), and between 2.0 and 2.3 GeV (LOLEP). The yields presented in this table were obtained using the ISGW2 form-factor. The downfeed background includes all $B \to X_u e\nu$ modes except for ρ , ω , and π . The crossfeed signal contribution corresponds to events from the other signal modes with ρ^0 , ω , or π and is constrained to the signal in the fit. All errors are statistical only.

	B ⁰ -	$\rightarrow \rho^- e^+ \nu$	$B^+ \rightarrow \rho^0 e^+ \nu$		
	HILEP	LOLEP	HILEP	LOLEP	
On-resonance yield	2302	39349	2213	40155	
Direct signal	510 ± 63	718 ± 89	324 ± 40	440 ± 55	
Crossfeed signal	262 ± 32	538 ± 73	363 ± 42	725 ± 86	
$\mathbf{Downfeed}$	203 ± 55	2278 ± 403	226 ± 92	2435 ± 430	
b ightarrow ce u	414 ± 5	33859 ± 438	367 ± 5	34366 ± 458	
$e^+e^- ightarrow q ar q$	917 ± 73	1928 ± 106	912 ± 73	2063 ± 110	
Fake electrons	12 ± 3	80 ± 9	18 ± 4	76 ± 9	

Model dependence in $|V_{ub}|$ BABAR B $\rightarrow \rho l v$ signal

Does it make sense to take the average of models ?

How can we improve our knowledge of V_{ub} from exclusive decays ?

A considerable amount of model dependence is due to FF uncertainties.

Lattice Calculations of $B \rightarrow \pi l \nu$ Form Factor

(from A. Kronfeld, hep-ph/0010074)

Need to measure $d\Gamma/dq^2$ for $B \rightarrow \pi l v$ at high $q^2/low p_{\pi}$

Future Improvements in $|V_{ub}|$ from the Lattice

$$|V_{ub}|^{2} = \frac{12\pi^{2}}{G_{F}^{2}m_{B}} \frac{1}{T_{B}(p_{\min}, p_{\max})} \int_{p_{\min}}^{p_{\max}} dp \frac{d\Gamma_{B \to \pi\ell\nu}}{dp}$$

 $\Delta V_{ub} \approx 15-18\%$ + quenching error

(A. El-Khadra et. al., PRD64, 014502)

To understand these errors: see Lectures by P. Lepage

MC simulation of the $B \rightarrow \rho l \nu$ Dalitz plot

Model dependence in $B \rightarrow \rho l \nu$ form factors

A tight p_L cut makes it difficult to distinguish models.

FF model	$\tilde{\Gamma}_{\rm thy}~({\rm ps}^{-1})$	$\Gamma(E_\ell>2.3~{ m GeV})/\Gamma~(\%)$	$\Gamma(2.0 < E_{\ell} < 2.3 \text{ GeV})/\Gamma$ (%)
ISGW2	14.2	35	33
LCSR	16.9	24	28
UKQCD	16.5	27	30
Wise/Ligeti+E791	19.4	31	34
Beyer/Melikhov	16.0	27	30

Model dependence of $B \rightarrow \rho l \nu$ form factors

FIG. 4. $d\Gamma/dq^2$ distributions for each of the three terms in Eq. 9: (a) the terms proportional to $|H_-|^2$ and $|H_+|^2$ and (b) the $|H_0|^2$ term.

BELLE: $B^0 \rightarrow \omega e^+ \nu$ signal selection

Lattice calcs of $B \rightarrow \rho$ FFs cannot handle the finite width of the ρ

Less exp problem with $B \rightarrow \pi \pi 1 \nu$

Belle-CONF-0242

BELLE: $B^0 \rightarrow \omega e^+ \nu$ signal

N(events) in the signal region with $0.76 < m(3\pi) < 0.81$

$$222\pm15 \text{ (total)}$$

$$48\pm10 (b \rightarrow c)$$

$$2\pm2 \text{ (fake)}$$

$$47\pm21 \text{ (cont.)}$$

$$MC \text{ est.}$$

•Excess in $m(3\pi)$ after side-band subtraction = 59 ± 15 events

Summary of recent $|V_{ub}|$ determinations

Review by Battaglia

Conclusions

An improved method for $|V_{ub}|$ determination using leptons in the endpoint region has been introduced. The uncertainty in the extrapolation is reduced by using the shape function measured in $b \rightarrow s \gamma$.

An inclusive method using optimized cuts on q^2 and M_X appears promising.

Prospects for improved $|V_{ub}|$ in $B \rightarrow \pi l v$ using high statistics measurements of $d\Gamma/dq^2$ and FFs determined from the lattice appear good.

Acknowledgments

Many of the pedagogical plots in the discussion of CKM matrix elements are taken from Prof. J.D.
Richman's lectures at Les Houches. He was the first person to give a comprehensible presentation of many of the issues related to semileptonic form factors. I have also benefitted and borrowed extensively from previous B physics reviews by P. Drell, S.Stone,
E.Thorndike and M.S. Witherell. Numerous plots were taken from talks by K.Ecklund, M.Luke and others.