(Time-Independent)

Measurements of Rare *B* Meson Decays at Belle

Brendan Casey, Hawaii/Belle \rightarrow Brown/D0

- *B* physics at KEK:
 - KEKB factory,
 - Belle experiment.
 - * particle ID,
 - * continuum suppression.
- Searching for NP with penguins
 - radiative,
 - leptonic,
 - hadronic.
- Even more info on $|V_{ub}|$
 - new modes, old tricks: $\omega l\nu$
 - new modes, new tricks $D_s\pi$

1

http://www-acc.kek.jp/WWW-ACC-exp/KEKB/KEKB-home.html

Belle Collaboration

250 - 350 scientists, 54 institutions, 13 countries, 4 continents

http://belle.kek.jp

R2

Belle Particle Identification

hadrons	dE/dxAerogel	n=1.028 Barrel ACC n=1.013 TOF/TSC 60mod. 240mod. 240mod. 860mod. 360mod. 860m
electrons	Time of flight E/p shower shape	CDC B(1.5Tesla) B
muons	dE/dx Aerogel penetration depth ϵ fake	BELLE We do not be the second second with the second se
K/π e μ	$\sim 90\% < 10\%$ > 90\% < 0.5% > 90% < 2%	$B_{2} \rightarrow D^{+}\pi^{-}$

Belle Continuum Suppression

 $B^0 \to K^+\pi^-$ data before and after likelihood ratio cut.

FCNC $b \rightarrow s$ **Penguins**

- No $b \to s$ tree in the SM
- Higher order penguins
- SM or new physics

 ${\mathcal B}$

radiative	$b ightarrow s \gamma$	$10^{-5} \leftrightarrow 10^{-4}$
hadronic	$b ightarrow sqar{q}$	$10^{-5} \leftrightarrow 10^{-4}$
leptonic	$b \rightarrow s l^+ l^-$	$10^{-7} \leftrightarrow 10^{-6}$

- Search for new physics by:
 - comparing exp. meas. to SM predictions,
 - CPV in 'pure' penguins.

New Physics Tree

Inclusive Radiative and Leptonic $b \rightarrow s$ Penguins

- Hadronic uncertainties minimized by summing over all states
- NLO and partial NNL0 calculation available
- Several observables sensitive to new physics
 - branching fractions,
 - di-lepton mass spectra,
 - hadronic mass spectra,
 - partial rate asymmetries between $b \rightarrow s$ and $\bar{b} \rightarrow \bar{s}$,
 - forward-backward asymmetries...

Inclusive
$$B \to X_s \gamma$$

- First published by CLEO (1995), confirmed by ALEPH (1998) and Belle (2001) publications.
- Belle:
 - $\mathcal{B}(B \to X_s \gamma) = (3.36 \pm 0.53 \pm 0.42^{+0.50}_{-0.54}) \times 10^{-4}.$
 - based on first 6 million $B\bar{B}$ events.
 - K. Abe et al., PLB 511, 151 (2001).
- World average: $\mathcal{B}(B \to X_s \gamma) = (3.22 \pm 0.40) \times 10^{-4}.$
- SM (NLO) = $(3.35 \pm 0.30) \times 10^{-4}$.

Exclusive $B \to K_X \gamma$

sum = $(35 \pm 8)\%$ of total $b \to s\gamma$

S. Nishida et al. hep-ex/0205025, submitted to PRL.

Radiative versus Leptonic Penguins

- Very good agreement between exp. and SM for $b \to s\gamma$.
- Already strong constraints on NP.
 - Kagen, Neubert hep-ph/9805303
 - Ali, Lunghi, Greub, Hiller hep-ph/0112300
- New Physics not accessible in FCNC *B* decays? Or is it hiding?

 $- \mathcal{A}(NP1) = -\mathcal{A}(NP2)?$

- $\mathcal{A}(NP) = -2\mathcal{A}(SM)$: $\mathcal{A}(total) = -\mathcal{A}(SM)$?
- Many ambiguities can be solved with leptonic penguins:
 - rate,
 - $m(l^+l^-),$
 - Forward-backward asymmetry.
- Remove HQET dependence with $b \to s\gamma$.
- Chances for really exotic things like $b \to s \ e^+ \mu^-$

- di-lepton system:
 - $-e^+e^-$, $\mu^+\mu^-$, and $e^+\mu^-$ combinations
 - $p(e) > 0.5 \text{ GeV}, p(\mu) > 1 \text{ GeV}$
 - $m(l^+l^-) > 200 \text{ MeV} \Rightarrow e^+e^- = \mu^+\mu^-$
- Recoil system X_s :
 - one K^+ or K_S^0 + up to 4 π , only 1 π^0 allowed - $m(X_s) < 2.1 \text{ GeV}$
- best candidate/event based on ΔE and $\cos \theta_B$.
- model:
 - sum of $K, K^*, X_s (> 1.1 \text{ GeV})$
 - $-\,$ Ali, Ball, Greub, Handoko, Hiller, Lunghi
 - Large part of model dependence removed by $b \rightarrow s\gamma \ E_{\gamma}$ spectrum. (Thank you CLEO!)

$B \to X_s l^+ l^-$ Backgrounds

- $q\bar{q} \Rightarrow$ shape variables
- double-semileptonic decay: $- B \rightarrow X l^+ \nu, \ \bar{B} \rightarrow \bar{X} l^- \bar{\nu}$
 - $B \to X_c l^+ \nu, X_c \to X_s l^- \bar{\nu}$
 - * $2\nu = \text{small } E_{vis}$
- $B \to \psi^{(')} X_s$: - veto $m(l^+ l^-)$
- double mis-id $\pi^+\pi^- \to l^+l^-$
 - $\# \text{ background} = f^2(\pi \to l) \times N(B \to X_s \pi^+ \pi^-).$

$B \to X_s l^+ l^-$ After Cuts

Combinatorial 70% S.L., $30\% \ q\bar{q}$

15

$$B \to J/\psi X_s$$

- remove J/ψ veto
- use for:
 - PDF tuning,
 - cross-checks

- Signal shape determined from $J/\psi X_s$
- background shape from MC

$$\begin{split} \mathcal{B}(\times 10^{-6}) \\ m(l^+l^-) > 0.2 \ \text{GeV} \\ \hline X_s e^+ e^- & 5.0 \pm 2.3^{+1.2}_{-1.1} \\ X_s \mu^+ \mu^- & 7.9 \pm 2.1^{+2.0}_{-1.5} \\ \hline X_s l^+l^- & 6.1 \pm 1.4^{+1.3}_{-1.1} \\ \hline 5.4 \ \sigma \ \text{sig. above background} \\ \text{J. Kaneko et al. Belle-Conf-0258} \end{split}$$

Hadronic Penguins

- Difficult to calculate in SM due to hadronic uncertainties....
- Still a great candidate for NP in 'pure' penguin modes
- Any measurement of (large) interference = NP.
- $B^{\mp} \to K_S \pi^{\mp}$:
 - nearly pure penguin
 - factorization based expectation: < 3% asymmetry between $K_S \pi^-$ and $K_S \pi^+$
 - SU(3) rescattering: $\mathcal{A}_{CP}(K_S \pi^{\mp}) \leq \mathcal{A}_{CP}(K^{\mp} \pi^{\pm,0})$
 - * $-0.15 < \mathcal{A}_{CP}(K^{\mp}\pi^{\pm}) < -0.2 @ 90\%$ C.L. (Belle + BaBar + CLEO)

Need several measurements and iterations

Exclusive

Semi-leptonic Decays

- neutrino reconstruction:
 - $E_{miss} = E_{beam} E_{rec}$
 - $\vec{p}_{miss} = \vec{p}_{beam} \vec{p}_{rec}$
- consistency cuts:
 - single lepton
 - event charge
 - missing mass
 - direction of missing momentum
- signal yield from:
 - $-\Delta E, p_l$, intermediate resonance...

$$B^+ \to \omega l^+ \nu$$

• narrow resonance, clean channel

– ,
$$(\rho)=150~{\rm MeV};$$
 , $(\omega)=8.4~{\rm MeV}$

- easier on the lattice
- yet another cross check

$$B \to D_s \pi, \ D_s K$$

- $D_s\pi$:
 - single amplitude prop. to $|V_{ub}|$
 - same theory problems as exclusive
 S.L. plus factorization
 - orders of magnitude easier measurement.
- D_sK :
 - Exchange only
 - possible SU(3) rescattering

$B \rightarrow D_s \pi, D_s K$ Reconstruction/Backgrounds

- $Ds \to \phi \pi, \ K^*K, \ K_sK$
- combine with π or K to form B
- standard shape cuts for $q\bar{q}$ suppression
- backgrounds:
 - real D_s : $q\bar{q} \leftarrow$ flat in ΔE
 - real charmless $B \to hhhh$; $h = \pi$ or K: \leftarrow flat in $m(D_s)$
 - mis-id: $D^+ \to K_s \pi^+, K^- \pi + \pi +: \leftarrow \text{veto}$
- 2-D fit to ΔE and $m(D_s)$

- $D_s^+\pi^-$:
 - $-10.1^{+4.4}_{-3.7}$ events
 - $\mathcal{B}(B^0 \to D_s^+ \pi^-) = (2.4^{+1.0}_{-0.8} \pm 0.7) \times 10^{-5}$
 - 3.6 σ
- $D_s^-K^+$:
 - $-16.4^{+4.6}_{-3.9}$ events
 - $\mathcal{B}(\bar{B^{0}} \to D_{s}^{-}K^{+}) = (4.6^{+1.2}_{-1.1} \pm 1.3) \times 10^{-5}$
 - 6.4 σ
- Cross check:
 - $\mathcal{B}(\bar{B}^0 \to D^+\pi^-) = (2.8 \pm 0.2) \times 10^{-3}$ PDG: $(3.0 \pm 0.4) \times 10^{-3}$

-
$$\mathcal{B}(\bar{B}^0 \to D^+ K^-) = (3.0 \pm 0.7) \times 10^{-4}$$

PDG: $(2.0 \pm 0.6) \times 10^{-4}$

$$B^0 \to D_s^+ \pi^-$$
 and V_{ub}

Ratio of
$$b \to u$$
 tree to $b \to c$ tree:

$$R = \frac{, (D_s^+ \pi^-)}{, (D_s^+ D^-)} = (0.424 \pm 0.041) \left| \frac{V_{ub}}{V_{cb}} \right|^2$$

Belle $D_s^+\pi^-$ and PDG $D_s^+D^-$:

 $R = (3.0^{+1.8}_{-1.6}) \times 10^{-3}$

using $|V_{cb}| = (41.2 \pm 2.0) \times 10^{-3}$ gives

 $|V_{ub}| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$

Good agreement with semi-leptonic modes but error is still large Good new challenge to theorists working on $|V_{ub}|$ (Already enough info to do an SU(3) analysis? $D\pi$, DK, $D_s\pi$, D_sK ...)

Other Interesting Rare Things

42 Papers sent to ICHEP2002:

- Charmless:
 - First observation of $B^+ \to \rho^+ \rho^0$; $\mathcal{B} = (38.5 \pm 10.9^{+5.9}_{-5.4} \, {}^{+2.7}_{-7.5}) \times 10^{-6}$
- Charmed:
 - several signals in $D^{0(*)}\pi^+\pi^-$: $D^{**}\pi$, $D^0\rho^0$...
- Charmonium:
 - Several color suppressed measurements: $J/\psi\pi^0$, $J/\psi\eta$
- Baryonic:
 - Chamless + baryons, charmed + baryons, charmed baryons...
- plus charm, two-photon, and tau physics

Conclusions for Time-independent Studies

- Belle and new physics:
 - Belle is leading the way into a new era of precision SM testing and searches for NP with leptonic penguin decays.
 - * Now measuring modes at the 6×10^{-7} level.
 - strongest limits on DCPV in 'pure' penguin modes.
- Belle and $|V_{ub}|$
 - New measurement of $|V_{ub}|$ from $D_s\pi$
 - * experimental feasibility (and simplicity) demonstrated
 - * now its up to the theorists
 - New semi-leptonic mode $\omega l\nu$
 - * narrow ω resonance may reduce the sensitivity to large model-dependent backgrounds

