Super-Kamiokande and K2K: Recent Results, Status, and Plans

R. Jeffrey Wilkes Dept. of Physics University of Washington Seattle

SLAC Summer Institute 8/15/02

Super-Kamiokande and K2K

Super-Kamiokande Neutrino Observatory

- In Mozumi mine of Kamioka Mining Co, near Toyama City
- Detects both natural (atmospheric, solar) and artificial (K2K) neutrinos

K2K (KEK to Kamiokande) long baseline experiment

- Neutrino beam is generated and sampled at KEK (national particle physics lab, near Tokyo)
- Beam goes through the earth to Super-K, 250 km away

The Super-Kamiokande Collaboration

Japan

- ICRR, University of Tokyo
- High Energy Accelerator Research Organization(KEK)
- Gifu University
- Kobe University
- Kyoto University
- Niigata University
- Osaka University
- Tohoku University
- Tokai University
- Tokyo Institute for Technology
- Tokyo University of Science
 Korea
- Seoul National University

Poland

Warsaw University

USA

- Boston University
- Brookhaven National Laboratory
- University of California, Irvine
- California St. Univ, Dominguez Hills
- George Mason University
- University of Hawaii, Manoa
- Los Alamos National Laboratory
- Louisiana State University
- MIT
- University of Maryland
- SUNY / Stony Brook
- University of Washington, Seattle

Super-Kamiokande

- US-Japan collaboration
- (~100 physicists)
- 50,000 ton ring-imaging water Cherenkov detector
- Inner Detector: 11,146 phototubes, 20" diameter
- Outer Detector: 1,885 phototubes, 8" diameter

- Began operation in April, 1996
- Published first evidence for neutrino mass in June, 1998
- Typically measures neutrino interaction location to within 25 cm, arrival direction to within few degrees
- Typically records about 15 neutrino events per second

See website for more info: http://www.phys.washington.edu/~superk/

The problem in a nutshell...

Explain the circumstances under which matter can, and probably WILL, disappear from the Universe. n.clr

Checking tubes by boat as the tank fills (1996)

• Each photomultiplier tube is 20 inches in diameter!

Neutrino event displays: v_e and v_{μ}

Electrons scatter in water and produce fuzzy Cherenkov rings; Muons travel in straight lines and produce sharper rings

Super-K Detector Geometry and Event Types

Atmospheric Neutrinos

- Produced by cosmic rays in upper atmosphere (altitude Z=15~20 km) $p+A \rightarrow \pi, K \rightarrow v$
- Flight path L to SK detector depends on zenith angle θ_z: L=f(θ_z, R,Z)

Atmospheric neutrino "double ratio"

 $R_{SK} = 0.66 \pm 0.03 \text{ (stat)} \pm 0.08 \text{ (sys)}$ ~8σ effect Atmospheric v puzzle: what happened to the v_µ ?

Atmospheric neutrino results

Atmospheric neutrino results

Upward Through Going u Upward Stopping II. 1.4 Combined fit to no-oscillations best-fit 1.2 expectation fully-contained 1 \mathbf{O} 0.8 partially contained \mathbf{O} 0.6 upward muons 0 0.4 0.2 0.5 DATA 0 0 -1 -0.8 -0.6 -0.4 -0.2-0.8 -0.4 0 -0.6 cosθ cosθ Δm^2 , eV² Unphysical Best fit for $\mu - \tau$, full mixing, region physical region only: $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ 99% CL 90% CL $\chi^2 = 162 / 170 \text{ DOF}$ (No-osc. hypothesis: $\chi^2 = 456 / 170 \text{ DOF}$) sin²20 10 0 7 ng n۵

-0.2

0

Why not $v_{\mu} \leftrightarrow v_{e}$?

For $v_{\mu} \leftrightarrow v_{e}$ hypothesis:

- best fit at $\Delta m^2 = 3 \times 10^{-3} \text{ eV}^2$, $\sin^2(2\theta) = 0.93$,
 - but $\chi^2 = 255/170$ DOF
 - $P(v_{\mu} \leftrightarrow v_{e})/P(v_{\mu} \leftrightarrow v_{\tau})$ negligible
- up/down asymmetry for electrons: Observed = $-0.036 \pm 0.067 \pm 0.02$ No-oscillation expected = 0.0 ± 0.02 Best-fit oscillation expected = 0.205(3.4 σ discrepancy)
- Anyway... results from CHOOZ experiment exclude $v_{\mu} \leftrightarrow v_{e}$ with high confidence in this region of parameter space

Why not $v_{\mu} \leftrightarrow v_{S}$?

- High energy sample (partially contained and upward-muon) analysis disfavors v_s
- $v_{\mu} \leftrightarrow v_{S}$ oscillations are suppressed by matter effects in earth
 - Coherent forward scattering of ν_{μ} and ν_{τ} are identical
 - > matter in path does not affect $v_{\mu} \leftrightarrow v_{\tau}$
 - ν_{μ} interacts with matter via NC
 - v_S does not interact at all by definition

For $\Delta m^2 \sim 3 \times 10^{-3} \text{ eV}^2$ (SK best-fit), neutrinos with $E_v > \sim 15$ GeV will have oscillation probability suppressed if mode is $v_{\mu} \leftrightarrow v_S$ zenith angle distribution of upward through going μ events (1138days)

Matter matters: Upward muon up/horizontal ratio

Limit on Sterile Content

3 flavor oscillations analysis

- Assume $\Delta m_{23}^2 = \Delta m_{atm}^2 \sim O(10^{-3}) eV^2$ $\Delta m_{12}^2 = \Delta m_{solar}^2 < O(10^{-4}) eV^2 << \Delta m_{atm}^2$ m_2 m_1
- Vacuum oscillations can then be described in a simplified way:

$$P(v_e \to v_\mu) = \sin^2(2\theta_{13}) \bullet \sin^2\theta_{23} \bullet \sin^2(1.27\Delta m^2 L/E)$$

$$P(v_\mu \to v_\tau) = \cos^4(\theta_{13}) \bullet \sin^2(2\theta_{23}) \bullet \sin^2(1.27\Delta m^2 L/E)$$

$$P(v_\tau \to v_e) = \sin^2(2\theta_{13}) \bullet \cos^2\theta_{23} \bullet \sin^2(1.27\Delta m^2 L/E)$$

$$P(v_\tau \to v_e) = \sin^2(2\theta_{13}) \bullet \cos^2\theta_{23} \bullet \sin^2(1.27\Delta m^2 L/E)$$

So only 3 parameters: $\Delta m^2 (=m^2_3 - m^2_2)$, θ_{13} , θ_{23}

- From SK atmospheric neutrino results, we know that we have:
 - large $v_{\mu} v_{\tau}$ mixing: $\theta_{23} \sim \pi/4$
 - No ν_{e} disappearance: θ_{13} is not large
 - CHOOZ tells us: $\sin^2 \theta_{13} < 0.026$ for $\Delta m^2 > 2 \times 10^{-3} eV^2$

So analysis of v_e events can estimate θ_{13}

SK allowed region for active 3-flavor oscillations

Atmospheric neutrino puzzle is resolved

- Atmospheric anomaly is due to neutrino flavor oscillations
- μ neutrinos oscillate predominantly into τ neutrinos, with no sterile neutrino needed
 - SK observes evidence for appearance of $\boldsymbol{\tau}$ neutrinos
- Mixing is large, possibly maximal
- The Δm^2 is a few times $10^{-3} eV^2$
- No hint of positive θ_{13} , SK can set limit

Solar neutrino flux

Seasonal variation of solar neutrino flux

 Consistent with variation expected from eccentricity of Earth's orbit

Solar v puzzle: Predictions of Standard Solar Model (BP2001) vs data

thanx to Michael Smy, UC Irvine

v oscillations: Allowed regions for SK 2-flavor analysis

Super-K + SNO

- Sudbury Neutrino Observatory (SNO) added another piece to the solar neutrino puzzle last year:
 - Super-K only measures v_e and v_u combined
 - SNO can measure v_e alone
- SNO results added to earlier Super-K results = solution !
 - Sun's expected $\nu_e\,$ output can be accounted for via effects of oscillations

Solar neutrino puzzle is resolved

- Anomoly is due to neutrino flavor oscillations
- ν_e oscillate into μ/τ neutrinos: no sterile neutrino needed
 - SK observes some evidence for appearance of ν_{μ}
- LMA solution is most likely, but quasi-VAC is still a (remote) possibility
- Mixing is large, but not quite maximal
- $\Delta m^2 = 3 \sim 23 \times 10^{-5} eV^2$

Combining SK results on solar and atmospheric neutrinos...

- Large mixing angles preferred
- 3 neutrinos are enough: no evidence anywhere in SK data for sterile neutrinos
- $\Delta m_{atm}^2 = 0.0025 eV^2$
- $\Delta m^2_{solar} = 0.00006 eV^2$
- Mass hierarchy scheme
 - Assume $m_1 = 0$
 - Assume $\theta_{13}=0$
 - Neglect CP phase

$$U \approx \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ -\frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 τ -type content μ-type content e-type content $\theta_{12} \approx \frac{\pi}{6} \quad \theta_{23} \approx \frac{\pi}{4} \quad \theta_{13} \approx 0$ m_3 m_2 m₁ 20 10 30 40 0 50

mass in meV

thanx to Michael Smy, UC Irvine

Before the disaster: Super-K Upgrade, Summer 2001

- Drained tank
- Replaced several hundred dead PMTs in both ID and OD while water level drops
- Revised water circulation plumbing to try to push radon level even lower

Super-K disaster 11/12/01

- 11/12/01: ~7000 ID PMTs and ~1000 OD PMTs were destroyed
- Refill under way, ~75% full at time of disaster
- Detector was operating (for SN watch): recorded sequential demise of PMTs
 - could watch it happen in the data files

Before: View into Super-K from tank top (1996)

After...

• Photo from ha

Underwater photos of damage

• Photos shortly after disaster with underwater camera and ROV

• 5000 undamaged PMTs remain

Recovery Plans

- Massive effort this year for recovery:
 - Drain tank and remove debris (completed)
 - Repair damaged tank structures and prepare for PMT replacement (April-June)
 - Rearrange surviving tubes to provide ~50% of original coverage (July-Sept)
 - Sufficient for for K2K and atmospheric neutrinos
 - Hamamatsu can supply ~1000 new PMTs this year, 6000 more in 3 years
 - Install protection against cascade failure
 - Acrylic domes to cover PMTs
 - Does not interfere with light collection
 - Slows down implosion effects to eliminate cascade failure
 - Start data taking by end of 2002
 - Restore supernova watch ASAP
 - K2K run Jan-June 2003
- Upgrade to full complement of PMTs in 2005, prepare for JHF2K

K2K: Long Baseline Neutrino Experiment (KEK E362)

- Beam energy: $E_v = 1 \sim 2 \text{ GeV}$
- Beam: ~6x10¹² protons/2.2 sec, 1.1 μsec spill time
- Path length: 250 km
- Dip angle: ~1 deg
- Beam aiming accuracy: ~1 mrad
- Beam half-width: ~3 mrad
- Rate: ~200 events at SK for 10²⁰ protons on target at KEK
 - \rightarrow 2.4x10⁻⁵ events/fullintensity spill
- Background: 5 atmospheric neutrino events/day in SK
 → P(BG)=6x10⁻¹¹ per spill

The K2K Collaboration

Japan

- High Energy Accelerator Research Organization(KEK)
- ICRR, University of Tokyo
- Kobe University
- Kyoto University
- Niigata University
- Okayama University
- Tokyo University of Science
- Tohoku University

Korea

- Chonnam National University
- Dongshin University
- Korea University
- Seoul National University

Poland

• Warsaw University

USA

- Boston University
- University of California, Irvine
- University of Hawaii, Manoa
- Massachusetts Institute of Technology
- State University of New York at Stony Brook
- University of Washington, Seattle

KEK v beam

What's new since last year...

- No new data, for obvious reasons!
 - 2002 run cancelled, next run begins January 2003
- Used unanticipated "spare time" to improve analysis
 - Full treatment of systematic errors
 - Recalibration of near detector elements
 - Spectrum shape analysis
 - No-oscillations probability limits updated
 - Allowed-region contours

Oscillation effects clearly visible in E spectrum

--- = no oscillations (10²⁰ pot \rightarrow 190 events @ SK)

Functional overview of K2K

K2K beam aiming accuracy at Super-K

Pion monitor data vs beam MC

- Samples p vs θ_{BEAM} in target hall
- Novel design with wedge reflector in beam
- Normally retracted, special calibration runs
- PiMon data vs beam MC: input for
 - Near detector spectrum
 - Far/near ratio

K2K Near Detector Hall

1kT Water Cerenkov Detector

- Miniature Super-Kamiokande detector:
 - Same PMTs, PMT spacing, photocathode coverage
 - Same event fitting and particle ID (PID) procedures
- Flash ADC (FADC) measures analog sum of all PMTs
- Neutrino event selection:
 - No activity within 1.2 μ s before spill
 - FADC signal shows only 1 event in spill
 - Reconstructed vertex within 25T fiducial volume

- Detection efficiencies:
 - Same MC used as in all Super-K analyses
 - 87% for CC interactions, 55% for NC inelastic
- Event rate:
 - $\langle v_u \text{ events per pot} \rangle = 3.2 \times 10^{-15}$
 - Corrected for spills with >1 event

1 kT event displays

Neutrino event

Beam induced muon

Fine-grained detector (Sci-Fi, PBG, veto counters and MRD)

K2K scintillating fiber detector

K2K Protons on Target (POT) vs time

 Intermittent and varying beam current in 1999 =
 "engineering run"

 Stable running in 2000 and 2001

 Net 5.6x10¹⁹ pot as of 7/01 (last run)

Finding K2K events at SK

Event selection criteria:
 Expected arrival time at SK:

$$T_{SK} = T_{SPILL} + TOF$$
$$TOF = 830 \ \mu \sec$$
$$\Delta T_{SPILL} = 1.1 \ \mu \sec$$
$$\sigma_{GPS} \approx 0.1 \ \mu \sec$$

So use 1.5 µsec acceptance window:

- Select FC events at SK with:
 - GPS timestamp within ΔT_{SK}

$$\Delta T_{SK} = T_{SK-0.2\,\mu\,\mathrm{sec}}^{+1.3\,\mu\,\mathrm{sec}}$$

- Total PMT signal $200 \le Q \le 50000$ photoelectrons
- Fully contained event: $N_{HIT-OD} < 10$ PMTs
- Inside 22.5 kT fiducial volume

Δt for SK events

- Time difference
 between
 - KEK spill time
 + L/c, and
 - SuperK event trigger times,

from GPS timestamps

(1.1 μsec spill length, ~100 nsec timing accuracy)

 Atmospheric neutrino background: <10⁻³ events within 1.5 µsec

Data sets used for analysis

- Running conditions
 - June 1999 (6.5% of total livetime)
 - 2 cm diameter Al target, horn current 200 kA
 - larger systematic errors in near-detector data
 - November 1999 July 2001
 - 3 cm target, horn current 250 kA
 - full analysis of systematic errors performed
- SK data sets
 - June '99 July '01 (full set)
 - analysis limited to number of events observed:
 - 56 fully contained, in fid.vol. (FC/FV) events with E_{vis} > 30 MeV
 - Expected (no-osc): 80 events (+6.2 / -5.4)
 - November '99 July '01
 - E_v spectrum shape analysis
 - 29 1-ring mu-like, FC/FV events

Oscillation analysis

- Analysis procedure
 - Observe (p_{μ}, θ_{μ}) spectra in near detectors
 - Unfold near spectrum $\phi_{near}(E_v)$ using neutrino interaction model
 - Extrapolate to far detector: near/far ratio $R_{FN}(E_v)$
 - Predict far spectrum $\phi_{SK}(E_v)$ assuming no oscillations
 - Number of events for no-osc (N_{SK}) using interaction model
 - all event types
 - Max Likelihood fit to spectral shape to get $\{\Delta m^2, \sin^2(2\theta)\}$ allowed region
 - event sample with best-known systematics (1-ring, mu-like FC/FV)
- Systematic errors analyzed
 - Beam flux
 - Quasi-elastic/non-QE ratio
 - Near/Far ratio
 - SK reconstruction efficiency
 - SK energy scale
 - Normalizations (for 6/99 and 11/99~7/01)

Near and far

Likelihood vs Δm^2 , sin²(2 θ)

• likelihood surface for spectrum shape + normalization

$$L_{tot} = L_{norm}(f) L_{shape}(f) L_{syst}(f)$$
Normalization:

$$N_{exp} = 80.1^{+6.2}_{-5.4}$$
Spectrum shape

Constraint term for systematic parameters (error matrices)

Allowed- Δm^2 scan in likelihood for full mixing

Normalization and shape analysis consistent

K2K allowed region (combined fit)

Best-fit values

• Probability of no oscillations:

N _{SK} only	1.3%	
Shape only	15.7%	

- N_{SK}+Shape 0.7%
- N_{SK} prediction = 54 (obs: 56)
- Best fit oscillation parameters $(\sin^2 2\theta, \Delta m^2) =$

Shape only: $(1.09, 3.0x10^{-3}eV^2)$ N_{SK} +Shape: $(1.03, 2.8x10^{-3}eV^2)$ Spectrum shape fit has $P_{K-S} = 79\%$

Future plans

- "JHF2K"
 - 50 GeV accelerator to be built 100 km N of Tokyo
 - JAERI (Japanese Atomic Energy Research Institute, Tokai-Mura)
 - Neutrino beam included in approved plans
 - High intensity: 3.3x10¹⁴ ppp/3.4 sec
 - ~20x increased sensitivity for oscillation effects
 - Narrow band beam: ~1 GeV
 - Far detector will be Super-Kamiokande
 - Baseline 295 km
 - Upgrade Super-K from 50% PMT coverage to 100% by 2007
 - See http:://neutrino.kek.jp/jhfnu
- Will allow:
 - Δm_{mx}^2 to be determined to $1 \times 10^{-4} \text{ eV}^2$ in one year; 1% measurement of $\sin^2 2\theta_{\mu \to x}$ in five years, $\sin^2 2\theta_{\mu e}$ to be measured down to 6×10^{-3} .
 - improved limits on possible sterile neutrino contributions in v_{μ} disappearance.
 - Measurement of CP violation in the lepton sector may be feasible, but will require new far detector with mass ~1 Mton. (No fundamental engineering showstoppers)

JHF accelerator: first beam in late 2006

Neutrino beam area at JHF

• Comparison of high intensity proton accelerators:

	Power, MW	Energy, GeV	Intensity, 10 ¹² ppp	Rep Rate, Hz
KEK-PS	0.005	12	6	0.45
FNAL-MI	0.41	120	40	0.53
JHF-I	0.77	50	330	0.29
JHF-II	4	50		

- Near detector at 280 m from production target
- Intermediate detector at 2 km an option
 - Large water Cherenkov detector
 - Excavation will be expensive...

JHF neutrino beam options

- Highest intensity
- Widest reach in Δm^2
- Background from HE tail
- Systematic error from spectrum extrapolation
- No HE tail
- Less systematic error on spectrum
- Easy to tune energy
- High intensity, narrow band
- More HE tail than NB beam
- Hard to tune energy

Neutrino beam energy spectra

Spectra for narrow band and off-axis options

Off-axis beam spectra

WB vs NB beam spectra

Super-K follow-up: Hyper-K?

Summary

- Consensus exists that neutrino oscillations explain the long-standing solar neutrino and atmospheric neutrino anomalies
- Super-K made (and will continue to make) essential contributions to our understanding of neutrino oscillations, in addition to nucleon decay and astrophysical studies
- K2K has proven the viability of LBL neutrino experiments
- Additional LBL beam studies are needed to clarify scenarios
- Super-K suffered a disastrous loss of photomultiplier tubes last year
- Thanks to prompt response by Japanese and US agencies, recovery is well underway
 - Expect to be taking data in time for scheduled KEK neutrino beam run in January, 2003
 - Plan to completely restore detector as soon as PMTs can be supplied, certainly in time for 2007 startup of new neutrino beam from JHF
- Plans include possibility that Super-K will be upgraded to Hyper-K still later

Implosion test videos: Bare tubes

- realtime

slow motion

Implosion tests: With acrylic shield

- realtime

Selected Super-K/K2K Publications

- Evidence for oscillation of atmospheric neutrinos, Phys.Rev.Lett. 81 (1998) 1562
- Flux and zenith-angle distribution of upward through-going muons, Phys.Rev.Lett. 82 (1999) 2644-2648
- Tau Neutrinos Favored over Sterile Neutrinos in Atmospheric Muon Neutrino Oscillations, Phys.Rev.Lett. 85 (2000) 3999-4003.
- Detection of Accelerator-Produced Neutrinos at a Distance of 250 km, The K2K collaboration, Phys.Lett. B511 (2001) 178-184.
- Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data, Phys.Rev.Lett. 86 (2001) 8656-8660.

See our website: http://www.phys.washington.edu/~superk/

• For additional details: see papers by M. Smy, M. Shiozawa, and K. Nishikawa at Neutrino 2002