First Results from the Pierre Auger Project

A new cosmic ray observatory designed for a high statistics study of the Highest Energy Cosmic Rays.

Jim Beatty (Ohio State)
for the Pierre Auger Collaboration

Colorado, USA
(in planning)

Mendoza, Argentina
(construction underway)

SSI 2005, August 3, 2005
Jim Beatty for the Pierre Auger Collaboration
Outline

• Description of the Experiment
 – Goals
 – Operation
 – Performance

• The Model-Independent Energy Spectrum
• Anisotropy results
• Photon fraction limit
The Auger Collaboration

Participating Countries

Argentina Mexico
Australia Netherlands
Bolivia* Poland
Brazil Slovenia
Czech Republic Spain
France United Kingdom
Germany USA
Italy Vietnam*

*Associate

63 Institutions, 369 Collaborators
Science Objectives

- Cosmic ray spectrum above 10^{19} eV (= 10 EeV)
 - Measure the shape of the spectrum in the region of the GZK feature
 - Spectrum is predicted to be sharply attenuated at $E > 5 \times 10^{19}$ eV due to scattering on CMB photons
- Arrival direction distribution
 - Search for departure from isotropy – point sources
- Composition
 - Light or heavy nuclei, photons, exotics?

Design Features

- High statistics (aperture >7000 km2 sr above 10^{19}eV in each hemisphere) → Actual threshold 3×10^{18}eV
- Hybrid configuration – surface array with fluorescence detector coverage
- Full sky coverage with uniform exposure
The Hybrid Design

A large surface detector array combined with air fluorescence detectors results in the unique and powerful design

- Simultaneous shower measurement allows for transfer of the nearly calorimetric energy calibration from the fluorescence detector to the event gathering power of the surface array.
 - FD duty cycle ~10%
 - SD duty cycle ~100%

- Different measurement techniques force understanding of systematic uncertainties in each.

- Reconstruction synergy for precise measurements in hybrid events.

- A complementary set of mass sensitive shower parameters contributes to the identification of primary composition.
The Observatory Plan

Surface Array
1600 detector stations
1.5 km spacing
3000 km²

Fluorescence Detectors
4 Telescope enclosures
6 Telescopes per enclosure
24 Telescopes total
The Surface Array
Detector Station

- Communications antenna
- GPS antenna
- Electronics enclosure
- Solar panels
- Battery box
- 3 nine inch photomultiplier tubes
- Plastic tank with 12 tons of water

SSI 2005, August 3, 2005
Jim Beatty for the Pierre Auger Collaboration
Surface Detector Deployment
SD tanks are self-calibrating
(Ambiponic muons used as a standard candle)

- Measure all signals in Vertical Equivalent Muon units (VEM).
- Trigger thresholds expressed in instantaneous current I_{VEM}
 - Dynamic range 0-700 I_{VEM}
- Time-integrated signals for energy measurement expressed in Q_{VEM}
SD triggers

- **Time-over-threshold (TOT) 1-5Hz**
 - Long signals

- **Threshold 20Hz**
 - Fast signals (inclined showers)

- **Central trigger, rate~3000/day**
 - Look for space-time clusters of triggered tanks

- **Event selection (for current spectrum analysis)**
 - Look for at least 3 TOT triggers in a compact configuration
 - ~600/day (~0.9/tank/day)
The Fluorescence Detector

- 440 pixel camera
- 3.4 meter diameter segmented mirror
- Aperture stop and optical filter
The Fluorescence Detector
Los Leones

30 deg x 30 deg x 30 km field of view per eye
FD Triggers

- Threshold trigger on individual pixels
- Look for “tracks”
 - 1 Hz trigger rate per 6 cameras
- Multi-camera events merged within 2 sec
- Geometry recon within 5 sec, and passed to central data acquisition system
 - Induces SD readout of tanks within range.
 - Obtain “Hybrid” events with both fluorescence longitudinal profile and surface detector signals.
Atmospheric Monitoring and Fluorescence Detector Calibration

Central Laser Facility (laser optically linked to adjacent surface detector tank)
- Atmospheric monitoring
- Calibration checks
- Timing checks

Radiosondes for atm profile

Lidar at each fluorescence eye for atmospheric profiling - "shooting the shower"

Absolute Calibration

Drum for uniform illumination of each fluorescence camera
Construction Progress

929 surface detector stations deployed
(~780 with electronics and sending triggers)

Three fluorescence buildings complete each with 6 telescopes
Example Event 1

A moderate angle event - 762238
Zenith angle ~ 48°, Energy ~ 70 EeV

Typical flash ADC trace
Detector signal (VEM) vs time (ns)

Lateral density distribution
Example Event 2

A high zenith angle event - 787469
Zenith angle ~ 60º, Energy ~ 86 EeV

Flash ADC Trace for detector late in the shower
Example Event 3
A hybrid event – 1021302
Zenith angle ~ 30°, Energy ~ 10 EeV

Lateral density distribution

Flash ADC traces

Lateral distribution function fit

SII 2005, August 3, 2005
Jim Beatty for the Pierre Auger Collaboration
Example Event 3

A hybrid event – 1021302
Zenith angle ~ 30°, Energy ~ 10 EeV

\[E = 10.2 \text{ EeV} \]

\[\frac{dE}{dX} \text{(MeV cm}^2\text{/g)} / 1e9 \]

\[S(1000) = 56 \text{ VEM SD Only} \]
\[S(1000) = 52 \text{ VEM Hyb. Geom} \]

\[\theta = 27^0 \]
\[R_p = 12 \text{ km} \]
\[\chi_0 = 94^0 \]
The First Data Set

Collection period – 1 Jan 2004 to 5 June 2005
Zenith angles - 0 - 60°
Total acceptance – 1750km² sr yr
(~ 1.07 * AGASA)
Surface array events
(after quality cuts)
Current rate - 18,000 / month
Total - 150,000
The SD Exposure Computation

- Determine the instantaneous effective surface area by monitoring the detector status in real-time.

- Multiply the trigger efficiency by the effective surface area of the array.

- Integrate over solid angle and time.

Exposure = 1750 km² sr yr = AGASA * 1.07
The Auger southern site is at 36° S latitude.

A region near the south celestial pole is always in view.

Coverage of Northern hemisphere is limited.
Hybrid Events

- Reconstructed
 - 1800/month
 - Total = 10,000
 - Mostly at low energies near eyes
 - ~2000 with energies above 1 EeV
Hybrid Core position and direction resolution is measured with CLF Laser shots

Core pos.

Angle in SDP

Laser shots

SD-Hybrid 3 stations - \(\theta \in (30, 50)\)
Hybrid core position and direction resolution is measured with CLF Laser shots

- Angular resolution (68% CL):
 - Hybrid – 0.6 degrees
 - Surface array
 - 2.2° for 3 station events (E< 4 EeV, θ < 60°).
 - 1.7° for 4 station events (3<E<10 EeV)
 - <1.4° for 5 or more station events (E>8 EeV)

- Core position
 - Hybrid – 60 meters
 - Surface array: < 200 meters
The GZK Feature?

- **AGASA (SD)** sees the apparent continuation of the spectrum.
- **HiRes (FD)** a dropoff in the spectrum above $10^{19.5}\text{eV}$.
FD-alone Energy Measurement

- **Pro:** The energy measurement is calorimetric.
 - Energy~ionization loss~tracklength~fluorescence emission

- **Cons:**
 - Low duty cycle
 - The aperture is not easily determined. For example, if the atmosphere is dirtier than expected:
 - *Energy is underestimated.*
 - *Exposure (integrated trigger efficiency) is overestimated.*
 - *With enough time and modest money spent on atmospheric monitoring, this problem can be mitigated.*
SD-alone Energy Measurement

Con: The energy measurement technique relies on MC simulations of the expected signal level
 - Assumed hadronic interaction model requires extrapolations of collider data to higher energies and rapidities. Uncertainties are difficult (impossible) to estimate.

Pros:
 - high duty cycle
 - Exposure is easily estimated
 - *The array trigger efficiency is 100% for large showers!*
 - self-calibration with atmospheric muons
The Auger Model-Independent Approach

Use the strengths from each technique:
FD(Hybrid) energy, SD statistics, SD exposure.

• From SD data, reconstruct a stable ground parameter $S(1000)$ (SD signal at 1000m) which is correlated with shower energy

• Empirically determine the $S(1000) \rightarrow$ Energy conversion
 − Measure the zenith angle dependence of the converter using SD data, and also using Hybrid data
 − Use Hybrid data to:
 • Normalize the converter assuming the FD (hybrid) energy scale
 • Determine the energy dependence of the converter

• Divide the SD energy histogram by the SD exposure to obtain the measured spectrum.
The SD fitting function is determined from the data

- LDF: Distribution of signals versus the core distance r (transverse distance of detector to the shower axis)

Use a “NKG-like” LDF $\sim r^{-\beta}$

Auger data $1.2 < \sec\theta < 1.4$

Measured $\beta(E,\theta)$ directly from the data.

$\sigma_\beta \sim 10\%$ from previous exps.
The Ground Parameter $S(1000)$

- To determine the shower energy, a single ground parameter $S(r)$ is traditionally chosen to minimize the effects of reconstruction errors, and shower-to-shower fluctuations.

$S(\,r\,)$ is determined from interpolating the data using a LDF with fixed β.

However, for most events, precise knowledge of the LDF shape is not important because there exists an optimal core distance R_{opt} at which the different fitted LDFs cross-over.

$S(r_{\text{opt}})$ is a stable ground parameter.
A fit to a NKG-like LDF function is used to extract simultaneously $S(1000)$ and the core position.

Statistical reconstruction error on $S(1000)$.

Systematic error from LDF shape <4%, estimated by varying LDF slope by +/-10%.

FADC saturated events have larger r_{opt}.

~1 EeV

~10 EeV
The total statistical fluctuations of $S(1000)$ including shower-to-shower can be estimated with simulations.

- $S(1000)$ is optimal for a 1.5km spacing array.
Showers coming from different zenith angles give very different signals due to flux attenuation in the atmosphere.

\[\theta = 0 \quad \theta = 60 \]

870 g/cm²

= 11 \(\lambda_1 \)

Earth

The “slant depth” is 870 g/cm² * sec(\(\theta \))
Measure the θ Dependence directly from the data

The flux dN/dS can in principle be measured independently in each zenith angle bin.

Because dN/dS falls monotonically with increasing S, and because the CR flux is isotropic to a good approximation, the contours of constant integrated flux intensity give the θ dependence of the $S(1000) \rightarrow$ Energy relationship.
The SD-measured θ dependence
(Constant Intensity Cut method)

- Shape is scanned in θ using bins of $\Delta \sin^2(\theta) = 0.1$

- Normalize at the median zenith angle of 38 degrees.

$$S(1000)_{\theta} = S_{38}(E) \times CIC(\theta)$$

- Assume for now that CIC(θ) is independent of energy.

Note: bins are correlated!

Use intensity cut corresponding to $E > \sim 3 \times 10^{18}$ eV

$$CIC(\theta) \approx \exp \left(- \frac{870 \, \text{g/cm}^2 \cdot (\sec \theta - \sec 38^\circ)}{\lambda_{\text{atten}}} \right)$$
Obtain the S38→Energy Correlation with Fluorescence energies from hybrid events

- Strict event selection:
 - tracklength $>350\text{g/cm}^2$
 - Cherenkov contamination $<10\%$

- Obtain converter:

$$E / EeV = 0.16 \times \left(\frac{S(1000) / \text{VEM}}{CIC(\theta)} \right)^{1.06}$$

- Note: systematic error grows when extrapolating this rule to 100 EeV!
Systematic Errors in the FD (Hybrid) Energy Normalization

Current Uncertainties

- Detector calibration: 12%
- Light collection: 5%
- Signal in the PMTs

Photons at the FD

- Geometry recon.: 2%
- Aerosols levels: 10%
- Clouds: 5%

Fluorescence photons emitted at the shower axis

- Atmospheric density profile: 2%
- Fluorescence Yield: 15%

Primary CR Energy

- Correction for missing energy: 3%
- Charged particles at the shower axis

<25%
Summary of procedure

• Reconstruct the ground parameter \(S(1000) \)
• Correct for the zenith angle dependence by converting \(S(1000) \) to \(S38 \) using the measured CIC curve.
• Convert \(S38 \) to Energy using the correlation determined with hybrid data

Tank signals \(\rightarrow \) \(S(1000) \) \(\rightarrow \) \(S38 \) \(\rightarrow \) Energy

Each step is empirically determined!
The Auger Southern Sky Energy Spectrum

\[\frac{dN}{d\ln E} = E \frac{dN}{dE} \]

- Errors on points are statistical only.
- Systematic errors are estimated at two energy regions:
 - Energy measurement (horizontal)
 - Exposure determination (vertical)

\[\Delta E/E \approx 30\% \]
\[\Delta E/E \approx 50\% \]
Comparison with HiRes1, AGASA-25%

AGASA – 25%

HiRes1

Auger

Flux \([\text{sr}^{-1}\text{sec}^{-1}\text{m}^{-2}\text{eV}^{-1}]\)

log (Energy [eV])
Our Highest Energy Event $E_{FD} \sim 2 \times 10^{20}$ eV
Landed just outside the array, so not used in spectrum!

- $\theta = 47^0$
- $R_p = 28$ Km
- $\chi_0 = 130^0$

Energy Estimate:
- $X_{max} \sim 770$ g/cm2
- $N_{max} \sim 2 \times 10^{11}$
- $E_{tot} \sim 200$ EeV
The Top 10 SD events

<table>
<thead>
<tr>
<th>Event Id</th>
<th>θ</th>
<th>S(1000)</th>
<th>Multiplicity</th>
<th>r_{opt}</th>
<th>β</th>
<th>E(EEV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1096757</td>
<td>45.1 ± 0.2</td>
<td>344 ± 15 ± 33</td>
<td>21</td>
<td>1322</td>
<td>—</td>
<td>86 ± 9</td>
</tr>
<tr>
<td>1225537</td>
<td>34.4 ± 0.2</td>
<td>364 ± 10 ± 13</td>
<td>14</td>
<td>909</td>
<td>2.48 ± 0.06</td>
<td>79 ± 4</td>
</tr>
<tr>
<td>787469</td>
<td>59.7 ± 0.2</td>
<td>204 ± 8 ± 11</td>
<td>31</td>
<td>1173</td>
<td>2.03 ± 0.06</td>
<td>76 ± 5</td>
</tr>
<tr>
<td>762238</td>
<td>47.3 ± 0.2</td>
<td>248 ± 11 ± 12</td>
<td>18</td>
<td>1135</td>
<td>2.22 ± 0.07</td>
<td>64 ± 4</td>
</tr>
<tr>
<td>1102721</td>
<td>23.8 ± 0.2</td>
<td>318 ± 22 ± 52</td>
<td>12</td>
<td>1467</td>
<td>—</td>
<td>63 ± 11</td>
</tr>
<tr>
<td>1233429</td>
<td>54.3 ± 0.2</td>
<td>201 ± 9 ± 16</td>
<td>21</td>
<td>1261</td>
<td>—</td>
<td>63 ± 6</td>
</tr>
<tr>
<td>1018639</td>
<td>26.9 ± 0.2</td>
<td>294 ± 19 ± 26</td>
<td>10</td>
<td>1196</td>
<td>2.93 ± 0.13</td>
<td>59 ± 6</td>
</tr>
<tr>
<td>1264145</td>
<td>16.3 ± 0.2</td>
<td>289 ± 12 ± 11</td>
<td>11</td>
<td>910</td>
<td>2.65 ± 0.11</td>
<td>56 ± 3</td>
</tr>
<tr>
<td>1263529</td>
<td>20.7 ± 0.2</td>
<td>264 ± 20 ± 34</td>
<td>7</td>
<td>1470</td>
<td>—</td>
<td>51 ± 8</td>
</tr>
<tr>
<td>634746</td>
<td>51.6 ± 0.2</td>
<td>174 ± 9 ± 12</td>
<td>14</td>
<td>1203</td>
<td>—</td>
<td>48 ± 4</td>
</tr>
</tbody>
</table>

Reconstruction errors only
Anisotropies

- It is extremely difficult to measure anisotropies in the sky which populate a narrow energy band in a rapidly falling energy spectrum.
 - The energy search window must be carefully tuned to coincide with the true energy band of any excess. Otherwise the isotropic lower energy background swamps the signal.
 - Systematic errors in the energy measurement can easily contaminate the population of the energy window.
 - Precise angular resolution is needed to detect sources with small intrinsic angular scales. Otherwise the off-source background flux dominates.

- Furthermore, low statistics require that the energy and angular windows be pre-defined so that the statistical significance of excesses can be evaluated.
Previous Observations of the Galactic Center

- 22% excess seen at 4.5σ by AGASA with a partial 20 degree tophat window (centered near the GC) with $E=1-2.5EeV$.

- SUGAR sees a 2.9σ excess with a 5.5 degree window at a slightly different location near the GC with $E=0.8-3.2EeV$.

To propagate through the Galactic magnetic fields, the particles are postulated to be neutral, and perhaps to be neutrons from p-p scattering.
Auger: No excess seen in either region

Coverage map by shuffling event zenith, day, hour

Events smoothed with true resolution, Energy = 0.8-3.2 EeV

Smoothed at SUGAR scale, SUGAR energy window

Smoothed at AGASA scale, AGASA energy window
Search for localized excesses

• Predefined search parameters:
 – $E=1-5 \text{ EeV}$, or $E>5 \text{ EeV}$
 – Angular scale=5 degrees, or 15 degrees (tophat)
 – Uses Monte Carlo energy converter instead of CIC (for now)

Sky coverage map

Look for excesses with tophats centered on each of 50K HEALPIX pixels (1 square degree)
So far, the data is consistent with isotropy
Other pre-defined targets not seen either with any large significance.

<table>
<thead>
<tr>
<th>Target</th>
<th>$\ell(\circ)$</th>
<th>$b(\circ)$</th>
<th>Radius</th>
<th>$\log(E/E_{\text{eV}})$</th>
<th>Found</th>
<th>Exp.</th>
<th>Prob</th>
<th>Req. Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 1</td>
<td>0.00</td>
<td>0.00</td>
<td>15$^\circ$</td>
<td>≥ 18</td>
<td>155</td>
<td>167.3</td>
<td>-</td>
<td>0.0035</td>
</tr>
<tr>
<td>GC 2</td>
<td>0.00</td>
<td>0.00</td>
<td>Point (2$^\circ$)</td>
<td>18 – 18.5</td>
<td>2</td>
<td>2.5</td>
<td>-</td>
<td>0.00025</td>
</tr>
<tr>
<td>AGASA SUGAR.</td>
<td>7.00</td>
<td>0.00</td>
<td>Point (2$^\circ$)</td>
<td>18 – 18.5</td>
<td>3</td>
<td>2.69</td>
<td>0.43</td>
<td>0.00025</td>
</tr>
<tr>
<td>NGC0253</td>
<td>88.92</td>
<td>-87.80</td>
<td>5$^\circ$</td>
<td>≥ 19.5</td>
<td>0</td>
<td>0.01</td>
<td>-</td>
<td>0.00005</td>
</tr>
<tr>
<td>NGC3256</td>
<td>277.56</td>
<td>11.49</td>
<td>5$^\circ$</td>
<td>≥ 19.5</td>
<td>0</td>
<td>0.01</td>
<td>-</td>
<td>0.00005</td>
</tr>
<tr>
<td>Centaurus A</td>
<td>309.43</td>
<td>19.44</td>
<td>5$^\circ$</td>
<td>≥ 19.5</td>
<td>0</td>
<td>0.01</td>
<td>-</td>
<td>0.00005</td>
</tr>
</tbody>
</table>

Caveats: This analysis still uses the old MC-derived energy converter.
Photon Limit

- All top-down models predict a large flux of photon primaries at some energy scale
For each of 16 selected hybrid events (tracklength>450g/cm²), simulate 100 photon showers

- Sample the distributions to compute the limit such that in 95% of mock experiments, a better limit is set.
Photon Fraction Limit Result

- Photon Fraction <26% at 95%CL for the integrated flux of cosmic rays with $E > 10$ EeV.
- Technique is applicable for low statistics datasets at high E.

SSI 2005, August 3, 2005
Jim Beatty for the Pierre Auger Collaboration
Composition
Sensitive SD observables

Risetime → Muon flux
Curvature → Xmax
Summary

• With only 25% of a full Auger-year exposure, we have already:
 – Defined our empirical spectrum analysis strategy and produced our first model-independent spectrum
 – Performed first studies of anisotropies in the sky
 – Defined a procedure for setting photon fraction limits with low statistics.
Future Plans

• Complete Auger South by mid 2006 (funding dependent)
 – Full aperture > 7000 km2 sr
• Fully understand our instruments.
• Use rapidly expanding data set (x7 in two years) to enable
 – Improved energy assignment
 • Improve LDF measurements → Reduce systematic errors in reconstructing events
 • Energy dependent CIC functions
 • Reduce error from extrapolating converter to high energies
 – High statistics study of the trans-GZK spectrum
 – Anisotropy studies and point source searches.
 – Primary composition and hadronic interaction studies
• Exploit events beyond a zenith angle of 60º
 – search for neutrinos and exotics
• Begin work on Auger North