Dark Matter: Observational Constraints

Does Dark Matter Exist?

Leo Blitz
UC Berkeley

Stanford July 30, 2007
Questions I’ll be addressing

• Does dark matter exist?
• Where do we know it does not exist?
• How much dark matter is there?
• What are its properties?
• Is there more than one kind of dark matter?
• What is it composed of?
• Are there alternatives to dark matter?
The First Dark Matter

Prediction of non-luminous matter from gravity alone
The First Dark Matter

Prediction of non-luminous matter from gravity alone

- Sirius and Procyon
 - Bessel (1844)
 - Detection of Sirius B
 - Clark (1862)

- Anomalous Orbit Perturbation of Uranus
 - Adams (1845)
 - Leverrier (1846)
 - Detection of Neptune
 - Galle (1846)
Does Dark Matter Exist?

- Since Dark Matter is by definition, dark, its observational constraints are generally of a dynamical nature. What this means is that there are only two equations of importance:

\[M = \alpha RV^2/G \] (virial theorem)

\[\frac{dP}{dr} = - \frac{GM\rho}{r^2} \] (hydro equilibrium)

\[\alpha \sim 1 \] depending on the shape of the potential. In general, look for systems where \(M(\text{obs}) \ll RV^2/G \), and then make sure we have all of the \(M \).

Except on the largest scales (lensing, CMB)
Mass-to-Light Ratios

- M in solar masses (M_{\odot})
- L in solar luminosities (L_{\odot})
- M/L of stars in solar vicinity is $0.67 \, M_{\odot}/L_{\odot}$
 - But need to include gas (atomic, molecular, ionized), dust (negligible), dead stellar remnants (white dwarfs, neutron stars, stellar black holes), very low mass stars (brown dwarfs)
- Typical value for a galactic disk is ~ 3 M_{\odot}/L_{\odot} (see Oort Limit)
- Can have a value up to ~5 M_{\odot}/L_{\odot} in old stellar systems
- Value also depends on wavelength
Does Dark Matter Exist?

• Velocity Dispersion of Galaxies in Clusters
 • Zwicky (1933)

• Oort Limit (Dark Matter in the MW Disk)
 • Oort (1932)

• Timing of M31 & Milky Way
 • Kahn & Woltjer (1959); Kochanek (1996)

• Stability of Cold Disks
 • Ostriker & Peebles (1973)
Does Dark Matter Exist?

- Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)
- Rotation Curves of Dwarf Galaxies
 - Aaronson (1983); Carignan (1989)
- X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.
 - Fabricant et al. (1980)
- Sunyaev-Zel’dovich Effect
 - Carlstrom (1999) et al.; et seq.
- Strong Lensing of Faint Blue Galaxies
 - Tyson (1992)
- Cosmic Microwave Background
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
Other Methods

• Weak Lensing (not discussed)
• Strong Lensing (MACHOS)
• Binary Galaxies (not discussed)
Does Dark Matter Exist?

- Velocity Dispersion of Galaxies in Clusters
 - Zwicky (1933)

- Oort Limit (Dark Matter in the MW Disk)
 - Oort (1932)

- Timing of M31 & Milky Way
 - Kahn & Woltjer (1959)

- Stability of Cold Disks
 - Ostriker & Peebles (1973)
Galaxy Clusters
Does Dark Matter Exist?

• Velocity Dispersion of Galaxies in Clusters (Virial Theorem)
 • Zwicky (1933, 1937)
 – Argued that virial theorem was the most accurate way to determine the mass of relaxed galaxy clusters (Coma). \(2T + V = 0\)

 – Argued that traditional methods of getting nebular (galaxy) was highly biased and inaccurate (photometry, rotation).

 – Showed that for Coma cluster, virial mass \(\sim 400\) x mass inferred from photometry (based on local calibration), therefore, there must be much non-luminous matter in galaxies.
Coma Cluster

M/L ~ 300
Total Mass = $1.6 \times 10^{15} \, M_\odot$ (Geller et al. 1999)
Total mass of galaxies ~ $7 \times 10^{13} \, M_\odot$
Does Dark Matter Exist?

- **Velocity Dispersion of Galaxies in Clusters (Virial Theorem)**
 - **Zwicky (1933, 1937)**
 - Used term “dark matter” perhaps for first time
 - Suggested using gravitational lensing to measure galaxy masses
 - Suggested using virial theorem to measure masses of galaxy clusters
 - But looking at the historical record, suggests that Zwicky may have made incorrect inferences about his measurements.
 - **Faber & Gallagher (1979)**
 - M/L in clusters of galaxies ~ 80 - 400
 - But some of this mass is in hot, x-ray emitting, and microwave absorbing gas.
Coma Cluster

Galaxies (visible)
X-rays (Chandra)

$M/L \sim 300$

Total Mass = $1.6 \times 10^{15} M_\odot$ (Geller et al. 1999)

Hot X-ray mass = $0.96 \times 10^{14} M_\odot$ (Mohr et al. 1999)
Coma Cluster

Galaxies (visible)

X-rays (Chandra)

M/L \sim 300

Total Mass = 1.6 \times 10^{15} \, M_\odot \ (Geller \ et \ al. \ 1999)

Hot X-ray mass = 0.96 \times 10^{14} \, M_\odot \ (Mohr \ et \ al. \ 1999)
Does Dark Matter Exist?

- Velocity Dispersion of Galaxies in Clusters
 - Zwicky (1933)

- Oort Limit (Dark Matter in the MW Disk)
 - Oort (1932)

- Timing of M31 & Milky Way
 - Kahn & Woltjer (1959); Kochanek (1996)

- Stability of Cold Disks
 - Ostriker & Peebles (1973)
Oort Limit

- Combining Poisson’s equation with the first moment of the Boltzmann Equation in z for an infinite disk one obtains:

$$\frac{d}{dz} \left[\frac{1}{n(z)} \frac{d}{dz} \left(n(z) \bar{v}_z^2 \right) \right] = 4\pi G \rho_0 (\text{tot})$$

$$\frac{1}{n(z)} \frac{d}{dz} \left(n(z) \bar{v}_z^2 \right) = 2\pi \Sigma (z)$$
Estimates of ρ_0 and Σ

- **Oort (1932)**
 \[
 \rho_0(\text{Oort Limit}) \sim 0.09 \, M_\odot \text{pc}^{-3}
 \]
 \[
 \rho_0(\text{observed}) \sim 0.03 \, M_\odot \text{pc}^{-3}
 \]

- **Bahcall (1984)**
 \[
 \rho_0 (\text{Oort Limit}) = 0.19 \, M_\odot \text{pc}^{-3}
 \]
 \[
 \rho_0(\text{observed, extrapolated}) = 0.14 \, M_\odot \text{pc}^{-3}
 \]

This result implied that there is dark matter in the disk (density in midplane from halo DM too small), this dark matter must be dissipational!
Estimates of ρ_0 and Σ

- **Oort (1932)**
 \[\rho_0 (\text{Oort Limit}) \sim 0.09 \, M_\odot \text{pc}^{-3}\]
 \[\rho_0 (\text{observed}) \sim 0.03 \, M_\odot \text{pc}^{-3}\]

- **Bahcall (1984)**
 \[\rho_0 (\text{Oort Limit}) = 0.19 \, M_\odot \text{pc}^{-3}\]
 \[\rho_0 (\text{Oort Limit}) \sim 0.14 \, M_\odot \text{pc}^{-3}\]

- **Kuijken & Gilmore (1988)**
 \[\Sigma(z) (\text{Oort Limit}) = 50 \, M_\odot \text{pc}^{-2}\]
 \[\Sigma(z) (\text{observed}) = 50 \, M_\odot \text{pc}^{-2}\]

There is no apparent need for dark matter in the disk of the Milky Way.
Does Dark Matter Exist?

- Velocity Dispersion of Galaxies in Clusters
 - Zwicky (1933)

- Oort Limit (Dark Matter in the MW Disk)
 - Oort (1932)

- Timing of M31 & Milky Way
 - Kahn & Woltjer (1959); Kochanek (1996)

- Stability of Cold Disks
 - Ostriker & Peebles (1973)
Timing Argument for M31

M31

Milky Way

Distance ~ 740 kpc

$\Delta V = -125$ km s$^{-1}$
Timing of M31

\[T_r = T_\psi = 2\pi \sqrt{\frac{a^3}{GM}}. \quad (3.29) \]

The angle \(\psi - \psi_0 \) is known as the **true anomaly**. A useful parametric representation of the orbit is

\[r = a(1 - e \cos \eta) \quad ; \quad t = (T_r/2\pi)(\eta - e \sin \eta) + t_0, \quad (3.30) \]

\[\tan \frac{1}{2}(\psi - \psi_0) = \sqrt{\frac{1+e}{1-e}} \tan \frac{1}{2} \eta. \]

\[\frac{d \log r}{d \log t} = \frac{t}{r} \frac{dr}{dt} = \frac{e \sin \eta(\eta - e \sin \eta)}{(1 - e \cos \eta)^2} \]

From Binney & Tremaine 2007

\[t = 13 \text{ Gyr}; \quad r = 740 \text{ kpc}; \quad e = 1; \quad \eta = 4.26; \quad a = 515 \text{ kpc}; \]

\[T_r = 15.8 \text{ Gyr} \]
Timing Argument for M31

- Distance ~ 740 kpc
- $\Delta V = -125$ km s$^{-1}$

$M_{\text{tot}}(\text{M31}) = 4.8 \times 10^{12}$ M$_{\odot}$

$M_{\text{lum}}(\text{MW}) \sim 10^{11}$ M$_{\odot}$

$M_{\text{lum}}(\text{M31}) \sim 1.5 \times 10^{11}$ M$_{\odot}$
Does Dark Matter Exist?

- **Velocity Dispersion of Galaxies in Clusters**
 - Zwicky (1933)

- **Oort Limit (Dark Matter in the MW Disk)**
 - Oort (1932)

- **Timing of M31 & Milky Way**
 - Kahn & Woltjer (1959); Kochanek (199?)

- **Stability of Cold Disks**
 - Ostriker & Peebles (1973)
Ostiker and Peebles (1973)

Fig. 4.—Evolution of model 1. The graphs show the positions of the mass points projected onto the plane, at four instants.
Recent Calculation (Sellwood, pers. comm)
Does Dark Matter Exist?

- Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)
- Rotation Curves of Dwarf Galaxies
 - Aaronson (1983); Carignan (1989)
- X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.
 - Fabricant (1980)
- Sunyaev-Zel’dovich Effect
 - Carlstrom (1999) et al.; et seq.
- Strong Lensing of Faint Blue Galaxies
 - Tyson (1992)
- Cosmic Microwave Background
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
Early suggestion

- Work of Babcock (1939) and Roberts & Whitehurst (1975) on the rotation curve of M31.

Fig. 16. The adopted rotation curve, a composite of optical (Rubin and Ford 1970) data and 21-cm major axis measurements. The surface density and cumulative mass curves are for a highly flattened model.

21-cm (radio) rotation curve
Rubin, Thonnard & Ford (1978)

optical rotation curves

Radial scale depends on value of the Hubble constant

Fig. 3. Rotational velocities for seven galaxies, as a function of distance from nucleus. Curves have been smoothed to remove velocity undulations across arms and small differences between major-axis velocities on each side of nucleus. Early-type galaxies consistently have higher peak velocities than later types.

Fig. 4. Rotation curves for two pairs of galaxies, which illustrate the lack of Tully-Fisher relation. NGC 7541 and NGC 801, both Sbc-Sc, have V_{max} values of 238 and 248 km s$^{-1}$. However, their luminosities (7.05 ± 0.7 and $23.8 \pm 9 \times 10^{9} L_{\odot}$) and radii (23.2 and 49.1 kpc) differ by factors of 3 and 2. Similarly, the Sc galaxies NGC 2998 and NGC 3672 have V_{max} of 211 and 208 km s$^{-1}$, but luminosities 14.9 ± 1.4; $4.45 \pm 0.4 \times 10^{9} L_{\odot}$ and radii 34.0 and 17.6 kpc.
Bosma (1978)

21-cm (radio) rotation curves
Milky Way - Blitz (1979)
Rosette Nebula and Molecular Cloud
Fig. 1.—The galactic rotation curve external to the solar circle from the values in Table 2. Crosses are points for which the errors are relatively small ($\Delta R \leq 1.0$ kpc, $\Delta \theta \leq 20$ km s$^{-1}$). The curve is a third-order least-squares polynomial fit to the data.

Fig. 2.—The composite rotation curve of the Galaxy, using the rotation curve from Fig. 1 matched to the 21 cm rotation curve from Burton and Gordon (1978). Error bars are shown for the points in Fig. 1 plotted as crosses.
Rotation Curve Decomposition

1. Universality of rotation curve shapes
2. Light profiles exponential
 1. If M/L in disks is constant, then mass of disk component is $M \sim R \exp\{-R/R_0\}$
 2. But flat rotation curves $\Rightarrow M(R) \sim R$
3. Oort limit + M/L suggest dark matter necessary but cannot be in disks.
4. Amount of dark matter determined by rotation curve decomposition.
 1. Led to maximum disk models
Stellar Components of Disk Galaxies

Bulge; Disk; Spheroid
Each had characteristic mass distribution

\[\Phi_1 + \Phi_2 + \Phi_3 + \ldots = \Phi_{\text{tot}} \]

\[\nu_{c1}^2 + \nu_{c2}^2 + \nu_{c3}^2 + \ldots = \nu_c^2 \]
Figure 1. Mass model for NGC 468. a. Radial luminosity profile from Boroson (1981), indicating our bulge/disk decomposition. b. Maximum disk mass model derived for the optical data alone. Note that no halo appears necessary. c. Maximum disk model derived from the HI data. In order to fit the data we now have to add a halo (in this calculation assumed to be isothermal) to the bulge and disk contributions. In both panels b and c the observed data points are represented by open circles, the bulge rotation curve by triangles, the disk by plus signs, their sum by dots, the halo by diamonds, and the total by solid lines.
Rotation Curve Fits Without Dark Matter

Palunas & Williams (2000)
Rotation Curve Fits Without Dark Matter

Palunas & Williams (2000)
Fig. 3.—Total H I map superposed on the optical for the combined VLA + DRAO data. The contours are 0.5, 1, 2, 4, 8, and 16×10^{20} cm$^{-2}$. The circular beam size is 1″.
Does Dark Matter Exist?

- Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)

- Rotation Curves of Dwarf Galaxies
 - Aaronson (1983); Carignan (1989)

- X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.
 - Fabricant et al. (1980)

- Sunyaev-Zel’dovich Effect
 - Carlstrom (1999) et al.; et seq.

- Strong Lensing of Faint Blue Galaxies
 - Tyson (1992)

- Cosmic Microwave Background
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
NGC 2976: B,V,R composite from Lowell 72” with CO overlay

\[D = 3.3 \text{ Mpc}; \quad I_{\text{CO}} = 2.2 \text{ K km s}^{-1} \]

- BIMA \(\sim \)5” resolution (80 pc)
- CO extends to \(R > 60” \) (1 kpc)
- BVRIJ HK photometry to better model stellar disk
- 2-D H\(\alpha \) with Densepack
NGC 2976 Rotation Curve

Linearly rising rotation curve implies $\rho(R) \sim \text{const}$; $M(R) \sim R^3$
NGC 2976 Rotation Curve

\[V_{\text{obs}} = V_{\text{sys}} + V_{\text{rot}} \cos \theta + V_{\text{rad}} \sin \theta \]
NGC 2976 Rotation Curve

- Power law provides a good fit to rotation curve out to 100" (1.7 kpc) (red)
- Power law fit
Maximum Disk Fit

- Maximal disk $M_*/L_K = 0.19 \, M_\odot/L_\odot, K$
- After subtracting stellar disk, dark halo structure is $\rho(r) = 0.1 \, r^{-0.01 \pm 0.12} M_\odot/pc^3$
- Even with no disk, dark halo density profile is $\rho(r) = 1.2 \, r^{-0.27 \pm 0.09} M_\odot/pc^3$
- **NO CUSP!**
Does Dark Matter Exist?

- **Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)**
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)

- **Rotation Curves of Dwarf Galaxies**
 - Aaronson (1983); Carignan (1989)

- **X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.**
 - Fabricant et al. (1980)

- **Sunyaev-Zel’dovich Effect**
 - Carlstrom (1999) et al.; et seq.

- **Strong Lensing of Faint Blue Galaxies**
 - Tyson (1992)

- **Cosmic Microwave Background**
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
M87 (Fabricant et al. 1980)

\[M_{\text{lum}} \sim 1.0 \times 10^{12} \, M_\odot \]

\[M_{\text{gas}} \sim 1.0 \times 10^{12} \, M_\odot \]

Assuming hydro eq.

\[M_{\text{tot}} \sim 1.7 - 2.4 \times 10^{13} \, M_\odot \]
Does Dark Matter Exist?

- **Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)**
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)

- **Rotation Curves of Dwarf Galaxies**
 - Aaronson (1983); Carignan (1989)

- **X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.**
 - Fabricant et al. (1980)

- **Sunyaev-Zel’dovich Effect**
 - Carlstrom (1999) et al.; et seq.

- **Strong Lensing of Faint Blue Galaxies**
 - Tyson (1992)

- **Cosmic Microwave Background**
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
Galaxy clusters + CMB \rightarrow SZE

Gravitational Lens in Abell 2218

Abell 2218 contours are 10% of the peak

X-ray

Abell 2163

Adapted from L. Van Speybroeck

LaRoque et al. astro-ph/0204134
Sample from 60 OVRO/BIMA imaged clusters, 0.07 < z < 1.03
SZE Surveys – Exploit SZE redshift independence

Use SZE as a Probe of Structure Formation
and to provide nearly bias free cluster sample

SZE contours every 75μK. Same range of X-ray surface brightness in all three insets.

\[S \propto \int \Delta T \, d\Omega \propto \frac{1}{d_A(z)^2} \int n_e kT \, dV \]

- Proportional to total thermal energy of electrons
- Temperature weighted electron inventory
Results

• $M_{\text{gas}}/M_{\text{total}} = 0.11 - 0.12$ on average for 28 clusters (assuming ΛCDM universe) (LaRoque 2006)

• Implies ~ 18% of mass in baryons, 2/3 in hot gas and 1/3 in galaxies (stars and cold gas) (LaRoque 2006)

• $M/L_B \sim 300$ (from optical, infrared and weak lensing) (Diaferio 1999; Rines 2001; Kaiser 2001)

• Implies DM distributed throughout cluster outside of galaxies; M/L for individual galaxies ~ 3-5
Does Dark Matter Exist?

• Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)
 • Rubin et al. (1978); Bosma et al. (1978)
 • Blitz (1979)

• Rotation Curves of Dwarf Galaxies
 • Aaronson (1983); Carignan (1989)

• X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.
 • Fabricant et al. (1980)

• Sunyaev-Zel’dovich Effect
 • Carlstrom (1999) et al.; et seq.

• Strong Lensing of Faint Blue Galaxies
 • Tyson (1992)

• Cosmic Microwave Background
 • Smoot et al. (1991)
 • Spergel et al. (2003, 2007)
Abell 1689
Abell 2261
Does Dark Matter Exist?

- Flat Rotation Curves of Galaxies (and large velocity dispersions of spheroids)
 - Rubin et al. (1978); Bosma et al. (1978)
 - Blitz (1979)
- Rotation Curves of Dwarf Galaxies
 - Aaronson (1983); Carignan (1989)
- X-ray emission from Elliptical Galaxy Halos and Galaxy Clusters.
 - Fabricant et al. (1980)
- Sunyaev-Zel’dovich Effect
 - Carlstrom (1999) et al.; et seq.
- Strong Lensing of Faint Blue Galaxies
 - Tyson (1992)
- Cosmic Microwave Background
 - Smoot et al. (1991)
 - Spergel et al. (2003, 2007)
The Microwave Sky

3° K Microwave Background – Radio Radiation left over from the Big Bang

Uniform and isotropic to one part in 10^5
Its distance is established by SZE
Its ubiquity from molecular excitation

$T = 2.728 \, \text{K}$
The Microwave Sky

Structure from the Sachs-Wolfe Effect

3° K Background – contrast enhanced 100,000 times
Bullet Cluster
Summary

• Existence of Dark Matter seems to be the simplest explanation for a large variety of dynamical, photometric, gravitational lensing, and microwave effects

• Occam’s razor suggests that barring new physics (MOND) the existence of dark matter is quite compelling

• Determining what it is, seems to be the next step