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 Cosmic ray protons? produced up to             
~1 ZeV = 1021eV = 109 TeV = 160J!
• At these energies p+p, p+γ… -> ν

 > 10 TeV γ-rays detected by ACTs from diverse 
sources
• Higher energy γ-rays attenuated by pair production
• Could be accompanied by protons and neutrinos

 Neutrinos escape from high energy density 
sources where protons and photons are trapped
• Black Holes, Gamma Ray Bursts, Magnetars… 
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Why build IceCube?

Even if we never find cosmic VHE neutrino sources, 
we still  have to explain these enormous energies



These Lectures

 First Lecture: Particle Acceleration
• Principles, formalism, general deductions

 Second lecture: Detailed Mechanisms
• Shocks, unipolar induction…

 Third lecture: Peter Meszaros
• Specific sources, neutrino production, limits… 
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GeV         TeV         PeV        EeV       ZeV

Cosmic Rays

protons

Protons?, Fe?

heavies?

Power Law ~E-2.65



Pierre Auger Observatory
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Measure UHECR using nitrogen fluorescence and water Cerenkov
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GeV         TeV         PeV        EeV       ZeV

Cosmic Rays
solar
system

active 
galactic
nuclei ??

supernova remnants

pulsars?   
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H.E.S.S., VERITAS…

 Measure ~ 0.1-10TeV gamma 
rays using atmospheric 
Cerenkov emission

7
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Fermi
 Joint NASA-DOE-Italy- France-Japan-

Sweden, Germany… mission
 Launch June 11 2008

• Cape Canaveral

 LAT: 0.02-300 GeV
 All sky every 3hr
 ~100 x Compton Gamma Ray Observatory
 Nominal performance
 Discovering pulsars, GRBs, quasars…
 Measures gamma ray background, 

electron spectrum
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Some Deductions

 UGCR ~ UGeV ~ UISM ~ UCMB ~ Ustar

 0.1 Myr < t < 15 Myr
 LCR ~ UCR Mgas c λ−1 ~ 3x1033W ~ 0.03LSNR~10-3Lgal

 UHECR extragalactic L ~ 3 x10-5 Lgal

 Cosmic ray astronomy??

SSI10 Cosmic Accelerators I
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Supernova remnants 

.

Chandra

Crab Nebula SN1987a

Cassiopeia A

X-ray    Radio
Cosmic rays

SN1006  X-ray

Optical
SN1006 Cas A Tycho

Power Law ~E-2
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Hadrons vs Leptons vs WIMPS
(Pions vs Compton vs Annihilation)

Hadrons? Leptons? WIMPs?

X-ray vs TeV
Fermi acceleration at shocks
Magnetic field amplification
Origin of cosmic rays?
Many puzzles remain
Fermi will interpolate

Relativistic jets created by massive
black hole in galactic nuclei
Gamma ray emission at small radii
Inverse Compton radiation
2 min variability?
EM -> L -> H ? RFF?
UHECR?

If DM is cosmologically-generated,
weakly interacting massive particle,
there may be detectable annihilation
from Galactic center and dwarf galaxies.
Constraints will be combined with 
results from LHC and underground 
direct searches. 
Must understand diffuse background!

SSI10 Cosmic Accelerators I
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Cygnus A

3C31

3C75

Extragalactic  Jets

Pictor A

M87

NGC 326

3C273

PictorA

Power Law ~E-2.4



Gamma Ray Bursts
 Three types

• Short -- NS coalescence
• Long – Collapse of massive stars
• Magnetars _ 0.3PG neutron stars

 Fermi (Swift)
• 240 GBM

- Broad spectral coverage
• 9 LAT (7 long, 2 short)

- 5 solar mass isotropic energy
- GeV photons -> Γ~1000
- Late emission (2000s)
- Short bursts also SN?? 13 11 viii 2010 SSI10 Cosmic 

Accelerators I
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Particle Acceleration

Ω

Φ

V ~ Ω Φ 
I ~ V / Z0
Z0~100Ω
P ~ V I ~ V2/Z0

Unipolar 
Induction

Stochastic 
Acceleration

U

c

∆E/E ~ +/-u/c
ln(E) ~ u/c (Rt)1/2



Particle Distribution Function

 MHD = Fluid mechanics (u, P, ρ), jxB,Maxwell
 Collisionless non-Maxwellian
 Details of velocity distribution matter
 dN=f(p,x,t)dpdx
 Lorentz invariant
 If isotropic, 
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dN
dE

=
4πpE

c 2 f



Vlasov Equation

 Collisionless plasmas

where

and                          + Maxwell 
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∂f
∂t

+ ∇ ⋅ vf + ∇ p ⋅
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dt

f =
∂f
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+ v ⋅ ∇f +
dp
dt

.∇ p f = 0

 

dp
dt

= e(E + v × B)

 

ρ = e dpf ; j = e∫ dpvf∫



Fokker-Planck Equation

 Markov Process. PDF depends upon where 
you just were; no long term memory

 Second inequality applies if no recoil 
 Diffusion in momentum space
 cf                             Black-Scholes!
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Fermi/stochastic acceleration

 Proton gains energy thorough 
collisions with something heavy
 Gas cloud, wave…
 Momentum kick ~ p

 Why special q; injection?
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Wave scattering
 eg Alfven waves, vA ~B/ρ1/2

 Wavelength ~ Larmor radius -> resonance
• ω-k||v||=nΩg; Ωg~E-1

 Pitch angle scattering Dφφ~Ωg(dB/B)2
 Lmfp~v/Dφφ;  Dxx~vlmfp

 Dpp ~p2ω(vA/v)2(dB/B)2
 VERY SLOW, Magnetosonic waves better

• Landau damping
 Much better in relativistic plasmas, vA~c
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Compton  Scattering
 Photons Compton scatter off electrons

 Kompaneets equation
 n is photon occupation number
 nonlinear term; Dirac-Kaptiza, induced 
Compton effect
 Purely classical; =>wave kinetic theory
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Wave Kinetics

 Plasma turbulence
• Wave-wave interaction; energy->shorter wavelength
• Interact with a range of particle energies

 Waves also created by instabilities of 
velocity distribution function
• Landau damping negative when
• Stream instability when v > vA

 Governs spatial transport of cosmic rays 
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∂f
∂p

> 0



 100Gev CR scatter off waves with λ ~ rL ~1014cm
• Waves are part of local turbulence spectrum
• Waves are self-generated by escaping particles <v> <VA

 CR escape times are energy-dependent
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SNR

Halo

Solar system



C Violation
 Protons create and scatter off RF waves 

• Protons are abundant 
• Protons create much turbulence
• Protons diffuse slowly
• Proton intensity relatively high

 Electrons create and scatter off LF waves 
• …Electron intensity relatively low
• Effects are energy-dependnet 

 Positrons create and scatter off RF waves 
• Follow the protons at the same rigidity
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Solar system is great laboratory

 Solar Dynamics Observatory
 Particle Acceleration in Solar Corona
 Solar flares involve explosive reconnection

• Generally quite inefficient but relativistic promising
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Summary
 Cosmic particle acceleration common, 
efficient and effective => Zevatrons
 Power laws common and a challenge to 
explain
 Electrostatic (unipolar induction) promising
 Stochastic (Fermi) accleleration also 
promising but only efficient in relativistic 
plasma
 Data improving rapidly
 Good motivation for seeking VHE neutrinos
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