Cosmic Accelerators 2. Pulsars, Black Holes and Shock Waves

> Roger Blandford KIPAC Stanford

Particle Acceleration

Unipolar Induction

Stochastic Acceleration

SSI10 Cosmic Accelerators II

Particle acceleration in SNR

~ 100TeV gamma rays

- ~0.3 PeV cosmic rays
- Hadronic vs leptonic (Fermi)

Variable X-rays

- 100 TeV electrons
- ~0.3 mG magnetic field
- Shocks also amplify magnetic field
 - Details controversial

Convection-Diffusion Equation

- Consider nearly isotropic df in medium containing scatterers moving with fluid velocity u(x,t)
 - eg Alfven waves with speed <<u
 - Stationary 1D flow

$$u \frac{\partial f}{\partial x} - \frac{\partial}{\partial x} D_{xx} \frac{\partial f}{\partial x} = \frac{1}{3} \frac{du}{dx} \frac{\partial f}{\partial \ln p}$$

- Spatial diffusion, p ~ L⁻¹ De Broglie...
- Much generalization

11 viii 2010

SSI10 Cosmic Accelerators II

Diffusive Shock Acceleration Non-relativistic shock front

- Protons scattered by magnetic inhomogeneities on either side of a velocity discontinuity
- Describe using distribution function f(p,x)

Transmitted Distribution Function

$$f = f_{-} + (f_{+} - f_{-}) \exp\left[\int_{0}^{x} dx' u/D\right]; x < 0$$

$$f = f_{+}; x > 0$$

$$f_{+}(p) = qp^{-q} \int_{0}^{p} dp' p'^{q-1} f_{-}(p'); q = 3r/(r-1)$$

•For strong shock with Mach number and monatomic gas (plasma), •q=4M²/(M²-1) => r=4 => N(E)~E⁻²

•Consistent with Galactic cosmic ray spectrum allowing for energy-dependent propagation

11 viii 2010

SSI10 Cosmic Accelerators II

Too good to be true!

- Diffusion: CR create their own magnetic irregularities ahead of shock through instability if <v>>a
 - Instability likely to become nonlinear Bohm limit
 - What happens in practice?
 - Parallel vs perpendicular diffusion?

Cosmic rays are not test particles

- Include in Rankine-Hugoniot conditions
- **u=u**(**x**)
- Include magnetic stress too?

Acceleration controlled by injection

- Cosmic rays are part of the shock
- What happens when v ~ u?
 - Relativistic shocks
- Energy cutoff?
 - E < euBR ~ PeV for mG magnetic field

Magnetic Bootstrap

- Alfven waves scatter cosmic rays at supernova remnants
 - $\lambda \sim \text{several } r_L(E)$
 - $D \sim c\lambda/3$; $L \sim D/u > 100 E_{PeV}B_{\mu G}^{-1}Z^{-1}pc$
 - Requires magnetic amplification; B > 100 μG
 - Highest energy cosmic rays stream furthest ahead of shock
 - Distribution function is highly anisotropic and unstable
 - Conjecture that magnetic field created at radii ~ 2R by highest energy escaping particles
 - Cosmic ray pressure dominates magnetic pressure upstream
 - Lower energy particles transmitted downstream and decompress!
 - Magnetic field created upstream and locally isotropic

Magnetic Field Amplification

Weibel

- Unmagnetized plasma
- Short wavelength ion skin depth
- Saturates when magnetized

Bell-Lucek

- GeV cosmic rays
- Cosmic ray and return current respond differently to perturbations
- Riquelme & Spitkovsky

Magnetic Bootstrap

Operates far ahead of shock front and enables PeV acceleration

PIC Simulations of collisionless shocks

Why does a collisionless shock exist?

Particles are slowed down either by instability (two-stream-like) or by magnetic reflection. Unmagnetized shocks are mediated by Weibel instability, which generates magnetic field:

11 viii 2010

SSI10 Cosmic A

Magnetic Bootlaces

How can a small magnetic ^P pressure mediate the interaction between two particle "fluids"?

$$\nabla P_P = j_P B$$
$$\nabla P_{CR} = j_{CR} B$$
$$\frac{dB}{dX} = j_P + j_{CR}$$

SSI10 Cosmic Accelerators II

Χ

Solar system shocks

- •Observations of planetary bow shocks
- •Voyager observations of solar wind termination shock
- •Numerical simulations

SSI10 Cosmic Accelerators

Cluster of Galaxies

- eg Perseus Cluster
- Observe using X-rays, lensing, CMB, simulations and gamma rays
- High entropy gas in outer regions.
 Requires ~10Mpc strong accretion shock
 - Simulations concur
- Accelerate UHECR if Fe!
- Unlikely to make observable neutrinos

GeV y-rays from Clusters of Galaxies

Keith Bechtol

Active Galactic Nuclei
Primordial cosmic rays
Dark Matter Annihilation

2010 Upper limits Active II interesting! 15

11 viii 2010

Unipolar Inductors

Neutron star magnetospheres

- Mapping of pulsar magnetospheres
- Plerions and relativistic shocks
- Force-free models
- Typically B~ 10¹² G, P~ 100ms, Φ ~ PV
- Millisecond magnetars
- B~ 10¹⁵ G, P~ 3ms, Φ ~ ZV

•Common sources especially at TeV

- •Displaced from pulsar
- •Synchrotron nebulae
- Compton -CMB/synchrotron
- Accelerating >10PeV electrons
- •Larmor radius ~0.1pc
 - •Cooling length ~0.01pc
 - •Requires E>~B!!
 - •Pulsar wind –relativistic beaming?
 - •Pulsar magnetosphere ground-states of gyration

Black Hole Accelerators

10⁹ M_o AGN hole

- **B** ~ 1**T**; **Ω** ~ 10⁻³ rad s⁻¹
- V ~ 1ZV; I ~ 10EA
- P~10³⁹W
- 10 M_o GRB hole
 - P~10⁴⁴W

Co-ax or hosepipe?

Radiative losses

- Synchrotron, Compton losses
- $P \sim E^2 M^{-4}$; irrelevant for protons
- Photo-pion production
 - Dark accelerators
- Collisional losses
 - Source of gamma rays

Good for VHE neutrinos; bad for UHECR!

VHE Neutrinos

- •Ice Cube deployed and working well
- •No sources yet
- •Leptonic vs hadronic jets
- •GZK neutrinos (unless Fe)
- •Cosmic ray detector
- •Geophysics...
- •Radio, sonic detection

PM will explain!

SSI10 Cosmic Accelerators II

- Cosmic shocks are efficient accelerators
 - Solar system, SNR, clusters..
- Accelerate protons/electrons to higher energy than expected
- This implies that they also strech magnetic field lines. Many competing plasma instabilities
- Unipolar induction associated with millisecond magnetars, black holes in AGN, GRB can induce ZV.
- Neutrino observations can distinguish leptonic from hadronic sources