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Particle Acceleration
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Cosmic Accelerators
 Stochastic acceleration  Unipolar induction

u u / r

B

u u / r

B

L

Ω

Shocks transmit power law distribution
f(p) ~ p-3r/(r-1)

Also second order processes; efficient when relativistic

Φ

V ~ Ω Φ ->1ZV
I ~ V / Z0->10EA
P ~ V I ~ V2/Z0
Z0~100Ω

Neutron stars (>PeV)
Black holes (< ZeV)

UHECR?
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Particle acceleration in SNR 
 ~ 100TeV gamma rays

• ~0.3 PeV cosmic rays
• Hadronic vs leptonic (Fermi)

 Variable X-rays
• 100 TeV electrons
• ~0.3 mG magnetic field

 Shocks also amplify 
magnetic field
• Details controversial

SN1006

Cas ATycho

Perseus 
Cluster

4



Convection-Diffusion Equation
 Consider nearly isotropic df in 
medium containing scatterers moving 
with fluid velocity u(x,t)
• eg  Alfven waves with speed <<u
• Stationary 1D flow

• Spatial diffusion, p ~ L-1 De Broglie…
• Much generalization
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Diffusive Shock Acceleration
 Non-relativistic shock front

• Protons scattered by magnetic 
inhomogeneities on either side of a velocity 
discontinuity

• Describe using distribution function f(p,x)  
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Transmitted Distribution Function

 

f = f− + ( f+ − f−)exp[ dx'u /D
0

x

∫ ];x < 0

f = f+;x > 0

f+(p) = qp−q dp' p'q−1 f−(p')
0

p∫ ;q = 3r /(r −1)

•For strong shock with Mach number and monatomic gas (plasma),
•q=4M2/(M2-1) => r=4 => N(E)~E-2

•Consistent with Galactic cosmic ray spectrum allowing for 
energy-dependent propagation
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Too good to be true!
 Diffusion: CR create their own magnetic irregularities ahead of 

shock through instability if <v>>a
• Instability likely to become nonlinear - Bohm limit
• What happens in practice?
• Parallel vs perpendicular diffusion?

 Cosmic rays are not test particles 
• Include in Rankine-Hugoniot conditions
• u=u(x)
• Include magnetic stress too?

 Acceleration controlled by injection
• Cosmic rays are part of the shock

 What happens when v ~ u?
• Relativistic shocks

 Energy cutoff?
• E < euBR ~ PeV for mG magnetic field
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Magnetic Bootstrap
 Alfven waves scatter cosmic rays at supernova 

remnants
• λ ~ several rL(E)
• D ~ cλ/3; L ~ D/u  > 100 EPeVBµG

-1Z-1pc
• Requires magnetic amplification; B > 100 µG  
• Highest energy cosmic rays stream furthest ahead of  shock
• Distribution function is highly anisotropic and unstable
• Conjecture that magnetic field created at radii ~ 2R by highest energy 

escaping particles
• Cosmic ray pressure dominates magnetic pressure upstream
• Lower energy particles transmitted downstream and decompress!
• Magnetic field created upstream and locally isotropic 

P(E) / ρu2

GeVTeVPeV

0.1

Shock

X

P(E) / ρu2

E
GeV      TeV     PeV



11 viii 2010 SSI10 Cosmic Accelerators II 10

Magnetic Field
Amplification

Weibel 
• Unmagnetized plasma 
• Short wavelength - ion skin depth
• Saturates when magnetized 

Bell-Lucek
• GeV cosmic rays
• Cosmic ray and return current respond differently to perturbations
• Riquelme & Spitkovsky

Magnetic Bootstrap
• Operates far ahead of shock front and enables PeV acceleration
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Why does a collisionless shock exist? 
Particles are slowed down either by instability (two-stream-like) or by magnetic reflection. 
Unmagnetized shocks are mediated by Weibel instability, which generates magnetic field:

PIC Simulations of collisionless shocks

Plasma density Field generation Spitkovsky
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Magnetic Bootlaces

 How can a small magnetic 
pressure mediate the 
interaction between two 
particle “fluids”?

th CR

mag

X

P

X

j

 

∇PP = jP B
∇PCR = jCR B
dB
dX

= jP + jCR

SSI10 Cosmic Accelerators II



Solar system shocks
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•Observations of planetary bow shocks
•Voyager observations of solar wind 

termination shock
•Numerical simulations

Spitkovsky



Cluster of Galaxies

 eg Perseus Cluster
 Observe using X-rays, lensing, CMB, 
simulations and gamma rays
 High entropy gas in outer regions. 
Requires ~10Mpc strong accretion shock
• Simulations concur

 Accelerate UHECR if Fe!
 Unlikely to make observable neutrinos
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GeV γ-rays from 
Clusters of Galaxies

•Active Galactic Nuclei 
•Primordial cosmic rays
•Dark Matter Annihilation

Upper limits are interesting!

Keith Bechtol
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Unipolar Inductors
 Neutron star magnetospheres

• Mapping of pulsar magnetospheres
• Plerions and relativistic shocks
• Force-free models
• Typically B~ 1012 G, P~ 100ms, Φ ~ PV
• Millisecond magnetars
• B~ 1015 G, P~ 3ms, Φ ~ ZV
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Pulsar Wind Nebulae
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•Common sources especially at TeV
•Displaced from pulsar
•Synchrotron nebulae
•Compton -CMB/synchrotron
•Accelerating >10PeV electrons
•Larmor radius – ~0.1pc

•Cooling length - ~0.01pc
•Requires E>~B!!
•Pulsar wind –relativistic beaming?
•Pulsar magnetosphere – ground-states of gyration 

synchrotron

Compton
Crab
Nebula



Black Hole Accelerators
 109 Mo AGN hole

• B ~ 1T; Ω ~ 10-3 rad s-1

• V ~ 1ZV; I ~ 10EA
• P ~1039W

 10 Mo GRB hole
• P~1044W

11 viii 2010 SSI10 Cosmic Accelerators II 18

Co-ax or hosepipe? 
McKinney+RB

Wilson



Losses

 Radiative losses
• Synchrotron, Compton losses
• P ~ E2M-4; irrelevant for protons

 Photo-pion production
• Dark accelerators

 Collisional losses
• Source of gamma rays
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Good for VHE neutrinos; bad for UHECR!



VHE Neutrinos
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•Ice Cube deployed and working well
•No sources yet
•Leptonic vs hadronic jets 
•GZK neutrinos (unless Fe)
•Cosmic ray detector
•Geophysics…
•Radio, sonic detection 

PM will explain!



Summary
 Cosmic shocks are efficient accelerators

• Solar system, SNR, clusters..
 Accelerate protons/electrons to higher energy 

than expected
 This implies that they also strech magnetic field 

lines. Many competing plasma instabilities
 Unipolar induction associated with millisecond 

magnetars, black holes in AGN, GRB can induce 
ZV.

 Neutrino observations can distinguish leptonic 
from hadronic sources
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