### Latest results from MiniBooNE

E. D. Zimmerman University of Colorado

SLAC Summer Institute Topical Conference August 10, 2010 E. Zimmerman, SSI 2000

#### My last SSI talk

#### • SSI 2000

 MiniBooNE construction had just begun

#### RECENT RESULTS FROM E815 (NuTeV)

E.D.ZIMMERMAN Columbia University New York, New York

SLAC SUMMER INSTITUTE AUGUST 24, 2000

#### Latest Results from MiniBooNE

- MiniBooNE
- Neutrino cross-sections
  - Quasielastic and elastic scattering
  - Hadron production channels
- Neutrino Oscillations
- Antineutrino Oscillations

#### **Motivating MiniBooNE: LSND** Liquid Scintillator Neutrino Detector

• Stopped  $\pi^+$  beam at Los Alamos LAMPF produces  $\nu_e$ ,  $\nu_{\mu}$ ,

 $\bar{\nu_{\mu}}$  but no  $\bar{\nu_{e}}$  (due to  $\pi^{-}$  capture). Search for  $\bar{\nu_{e}}$  appearance via reaction:

$$\bar{\nu}_e + p \to e^+ + n$$

- Neutron thermalizes, captures  $\Rightarrow$  2.2 MeV  $\gamma$ -ray
- Look for the delayed coincidence.
- Major background non-beam (measured, subtracted)
- 3.8 standard dev. excess above background.
- Oscillation probability:

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = (2.5 \pm 0.6_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-3}$ 



#### LSND oscillation signal

- LSND "allowed region" shown as band
- KARMEN2 is a similar experiment with a slightly smaller L/E; they see no evidence for oscillations. Excluded region is to right of curve.



#### The Overall Picture

 $\begin{array}{lll} {\rm LSND} & \Delta m^2 > 0.1 {\rm eV}^2 & \bar{\nu}_\mu \leftrightarrow \bar{\nu}_e \\ {\rm Atmos.} & \Delta m^2 \approx 2 \times 10^{-3} {\rm eV}^2 & \nu_\mu \leftrightarrow \nu_? \\ {\rm Solar} & \Delta m^2 \approx 10^{-4} {\rm eV}^2 & \nu_e \leftrightarrow \nu_? \end{array}$ 

With only 3 masses, can't construct 3  $\Delta m^2$  values of different orders of magnitude!

- Is there a fourth neutrino?
  - If so, it can't interact weakly at all because of Z<sup>o</sup> boson resonance width measurements consistent with only three neutrinos.
- We need one of the following:
  - A "sterile" neutrino sector
  - Discovery that one of the observed effects is not oscillations
  - A new idea

#### MiniBooNE: E898 at Fermilab

- Purpose is to test LSND with:
  - Higher energy
  - Different beam
  - Different oscillation signature
  - Different systematics
- L=500 meters, E=0.5-1 GeV: same L/E as LSND.

#### **Oscillation Signature at MiniBooNE**

Oscillation signature is charged-current quasielastic scattering:

 $\nu_e + n \to e^- + p$ 

- Dominant backgrounds to oscillation:
  - Intrinsic  $\nu_e$  in the beam  $\pi \to \mu \to \nu_e$  in beam  $K^+ \to \pi^0 e^+ \nu_e, \ K_L^0 \to \pi^0 e^{\pm} \nu_e$  in beam
  - Particle misidentification in detector
     Neutral current resonance:

 $\Delta \to \pi^0 \to \gamma \gamma \text{ or } \Delta \to n\gamma, \text{ mis-ID as } e$ 

#### MiniBooNE Beamline



- 8 GeV primary protons come from Booster accelerator at Fermilab
- Booster provides about 5 pulses per second,  $5 \times 10^{12}$  protons per 1.6  $\mu$ s pulse under optimum conditions

## Secondary beam: horn and target

- Target is beryllium, 71 cm  $(1.7\lambda)$ .
- Cooling tube and target are cantilevered into the neck of the horn.
- MiniBooNE horn runs at 174 kA, 140  $\mu$ s pulse. Can focus  $\pi^+$  for neutrinos or  $\pi^-$  for antineutrinos.







### Decay Pipe and absorber



### MiniBooNE neutrino detector

Pure mineral oil
800 tons; 40 ft diameter
Inner volume: 1280 8" PMTs
Outer veto volume: 240 PMTs

### Cherenkov ring characteristics: muons





 Muons have sharp filled in Cherenkov rings.

### Cherenkov ring characteristics: electrons



 Electrons undergo more scattering and produce "fuzzy" rings.

### Cherenkov ring characteristics: $\pi^0$

 $\pi^0$ 



- $\pi^0$  decay to  $\gamma\gamma$  with 99% branching ratio.
- Photon conversions are nearly indistinguishable from electrons.

## MiniBooNE's track-based reconstruction

- A detailed analytic model of extended-track light production and propagation in the tank predicts the probability distribution for charge and time on each PMT for individual muon or electron/photon tracks.
- Prediction based on seven track parameters: vertex (x,y,z), time, energy, and direction  $(\theta, \varphi) \Leftrightarrow (U_x, U_y, U_z)$ .
- Fitting routine varies parameters to determine 7-vector that best predicts the actual hits in a data event
- Particle identification comes from ratios of likelihoods from fits to different parent particle hypotheses

#### **Beam/Detector Operation**

- Fall 2002 Jan 2006: Neutrino mode (first oscillation analysis).
- Jan 2006 2011(?): Antineutrino mode
  - (Interrupted by short Fall 2007 April 2008 neutrino running)
- Present analyses use:
  - $\geq$  5.7E20 protons on target for neutrino analyses
  - 5.66E20 protons on target for antineutrino analyses
  - Over one million neutrino interactions recorded: by far the largest data set in this energy range

### Neutrino scattering crosssections

- To understand the flavor physics of neutrinos (*i.e.* oscillations), it is critical to understand the physics of neutrino interactions
- This is a real challenge for most neutrino experiments:
  - Broadband beams
  - Large backgrounds to most interaction channels
  - Nuclear effects (which complicate even the definition of the scattering processes!)

# Scattering cross-sections for $v_{\mu}$

The state of knowledge of  $v_{\mu}$  interactions before the current generation of experiments:

- Lowest energy ( E < 500 MeV ) is dominated by CCQE.
- High energies (E > 5 GeV) are completed dominated by deep inelastic scattering (DIS).
- Most data over 20 years old, and on light targets (deuterium).
- Current and future experiments use nuclear targets from C to Pb; almost no data available.

















### Critical for measuring crosssections: well-understood flux

- Detailed MC simulations of target+horn+decay region, using  $\pi$  production tables from dedicated measurements: PRD **79** 072002 (2009).
- No flux tuning based on MB data
- Most important π production measurements from HARP(at CERN) at 8.9 GeV/c beam momentum (as MB), 5% int. length Be target (Eur.Phys.J.C52 (2007)29)
- Error on HARP data (7%) is dominant contribution to flux uncertainty
- Overall 9% flux uncertainty, dominates cross section normalization ("scale") error



FIG. 2: (color online) Predicted  $\nu_{\mu}$  flux at the MiniBooNE detector (a) along with the fractional uncertainties grouped into various contributions (b). The integrated flux is 5.16 ×  $10^{-10} \nu_{\mu}/\text{POT/cm}^2$  (0 <  $E_{\nu}$  < 3 GeV) with a mean energy of 788 MeV. Numerical values corresponding to the top plot are provided in Table V in the Appendix.

### MiniBooNE cross-section measurements

- NC  $\pi^0$
- CC  $\pi^0$
- CC  $\pi^+$
- CC Quasielastic
- NC Elastic
- CC Inclusive

### MiniBooNE cross-section measurements



- CC  $\pi^0$
- CC  $\pi^+$
- CC Quasielastic
- NC Etastic
- CC metusive

Due to limited time, only Due to limited time, only discussing charged-current discussive modes here.

### Charged-current $\pi^0$ production

- Least common interaction for which we do exclusive measurement
- Uniquely, proceeds only via resonance:  $v+n \rightarrow \mu + \Delta \rightarrow \mu + p + \pi^0$
- Challenging 15-parameter, 3-ring fit needed:
  - Event vertex: (x,y,z,t)
  - Muon: (Ε,θ,φ)
  - 1st photon:  $(E,\theta,\phi,s)$
  - 2nd photon:  $(E,\theta,\phi,s)$
- Relatively high backgrounds (mostly  $CC\pi^+$  which we measure separately)



#### A general concern: final state interaction

- The particles that leave the target nucleus are not necessarily the final state particles from the initial neutrino-nucleon interaction.
- True  $CC\pi^+$  can be indistinguishable from CCQE ( $\pi^+$  absorption) or  $CC\pi^0$  (charge exchange).
- Experiments only have access to what came out of the nucleus. These are called *observable events*:
  - An interaction where the target nucleus yields one  $\mu^-$ , exactly one  $\pi^+$ , and nuclear debris is observable  $CC\pi^+$ , regardless of the initial nucleon-level interaction
- Most of our measurements are of observable cross-sections.





L

- target nucleus is considered signal.
- Charge exchange with *other* nuclei constitutes a **background**.
- We **include** FSI pion production to remove model dependence; **exclude** tank  $\pi^0$  to remove detector dependence.

#### Reconstructed signal candidates

- Two-photon invariant mass  $m_{\rm YY}$  allows very effective identification of events with a  $\pi^0$
- Reconstruction of full event allows observation of  $\Delta$  resonance



NUANCE is the default MiniBooNE neutrino interaction generator

## Measured observable $CC\pi^0$ cross-section



- The dominant error is  $\pi^+$  charge exchange and absorption in the detector.
- First-ever differential cross-sections on a nuclear target.
- The cross-section is larger than expectation for all energies.
- Publication is imminent.

#### Charged-current $\pi^+$ production

- Second-largest interaction channel at MiniBooNE
- Can proceeds via resonance  $v + N \rightarrow \mu + \Delta \rightarrow \mu + N' + \pi^+$  or by coherent nuclear scatter.
- Identified by observation of *two* stopped muon decays after primary event. Unique signature results in purest exclusive sample in MiniBooNE
- Pion reconstruction and  $\mu/\pi$  separation are challenging.

#### Cherenkov ring shapes: $\pi^+$

- Pions occasionally interact hadronically, losing energy and changing direction sharply.
- Kinked track produces two rings: a "doughnut" and a "doughnut hole."
- Pion reconstruction fitter developed to searched for the kinked track
- Likelihood identifies the pion
- ~90% purity, ~67,000 events.
- Reconstruction of muon and pion allows  $\Delta$  mass to be calculated





### Measured observable chargedcurrent $\pi^+$ cross-sections

- Differential cross sections (flux averaged):
  - $d\sigma/dQ^2$ ,  $d\sigma/dE_{\mu}$ ,  $d\sigma/d\cos\theta_{\mu}$ ,  $d\sigma/d(E_{\pi})$ ,  $d\sigma/d\cos\theta_{\pi}$ :
- Double Differential Cross Sections
  - $d^2\sigma/dE_{\mu}d\cos\theta_{\mu}$ ,  $d^2\sigma/dE_{\pi}d\cos\theta_{\pi}$
- Data Q<sup>2</sup> shape differs from the model
- Paper submission is imminent



## Charged-current quasielastic scattering (CCQE)

- Lepton vertex well understood
- Nucleon vertex parametrized with 2 vector form factors  $F_{1,2}$  and one axial vector form factor  $F_A$

W

- Use relativistic Fermi gas model of nucleus;  $F_{1,2}$  come from electron scattering measurements
- Generally assume dipole form of  $F_A$ ; only parameter is axial mass  $m_A$  extracted from neutrino-deuterium scattering experiments: 2002 average  $M_A = 1.026 \pm 0.021 \text{ GeV}$   $F_A(Q^2) = -\frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$

#### CCQE analysis

- We report a nucleon-level cross-section here, not just observable
- $CC\pi^+$  is (largest) background (one  $\mu$  decay missed because of  $\pi$  absorption,  $\mu$  capture, or detector inefficiency)
- Important detail: MiniBooNE data used to measure this background  $\sim 1/2$  of CC $\pi^+$  background is irreducible (no  $\pi$  in final state, *i.e.* observable CCQE)
- Final CCQE sample:
  - 146k CCQE candidates
  - 27% efficiency 77% purity

#### CCQE fit results: Q<sup>2</sup> dependence

- Data are compared (absolutely) with CCQE (RFG) model with various parameter values
- We prefer larger *m*<sub>A</sub> compared to D<sub>2</sub> data
- Our CCQE cross-section is 30% high the worldaveraged CCQE model (red).
- Model with CCQE parameters extracted from shape-only fit agrees well with over normalization (to within normalization error).



#### Flux or interaction model?

- Normalization disagrees: check kinematics
- Look at data-MC disagreement before tuning



- Disagreements follow contours of constant  $Q^2$ , not constant  $E_v$  as would be expected if flux wrong.
- Normalization agrees (within errors) with prediction using best fit shape parameters.

# Comparisons to other experiments (carbon targets)



- Our data (and SciBooNE) appear to prefer higher *M<sub>A</sub>* than NOMAD, but the disagreement is not very significant.
- Note that:
  - Our errors are systematic-dominated and grow at highest energies
  - NOMAD required observed muon, proton tracks and no others: in principle, different processes may contribute to the two experiments' samples

# Neutrino Oscillations: 2007 result

- Search for nu\_e appearance in the detector using quasielastic scattering candidates
- Sensitivity to LSND-type 3.0 oscillations is strongest in 475  $\stackrel{3.0}{\underbrace{2.5}}$  MeV < E < 1250 MeV range  $\stackrel{3.0}{\underbrace{2.5}}$
- Data consistent with background in oscillation fit range
- Significant excess at lower energies: source unknown, consistent with either  $v_e$  or single photon production



### Neutrino Oscillation Limit

- Single-sided 90% confidence limit
- Best fit (star): (sin<sup>2</sup>2 $\theta$ ,  $\Delta$ m<sup>2</sup>) = (0.001, 4 eV<sup>2</sup>)
- Reported in PRL 98
   231801 (2007)
- Low-energy excess analysis PRL **102** 101802 (2009)



#### Antineutrino Oscillations

- LSND was primarily an antineutrino oscillation search; need to verify with antineutrinos as well due to potential *CP*-violating explanations
- Now have same number of protons on target in antineutrino vs. neutrino mode, but...
  - Antineutrino oscillation search suffers from lower statistics than in neutrino mode due to lower production and interaction cross-sections
  - Also, considerable neutrino contamination  $(20\pm5)\%$  in antineutrino event sample

### Oscillation Fit Method

• Maximum likelihood fit:

$$-2\ln(L) = (x_1 - \mu_1, \dots, x_n - \mu_n)M^{-1}(x_1 - \mu_1, \dots, x_n - \mu_n)^T + \ln(|M|)$$

- Simultaneously fit
  - $\overline{v}_{e}$  CCQE sample
  - High statistics  $\overline{v}_{\mu}$  CCQE sample
- $v_{\mu}$  CCQE sample constrains many of the uncertainties:



Cross section uncertainties (assume lepton universality)

### Antineutrino oscillation candidates

- Background modes -- estimate before constraint from  $\overline{\nu}_{\mu}$  data (constraint changes background by about 1%)
- Systematic error on background  $\approx 10.5\%$  (energy dependent)

| Process                                              | $200-475~{\rm MeV}$ | $475-1250~{\rm MeV}$ |
|------------------------------------------------------|---------------------|----------------------|
| $\stackrel{(-)}{\nu_{\mu}}$ CCQE                     | 4.3                 | 2.0                  |
| NC $\pi^0$                                           | 41.6                | 12.6                 |
| $\operatorname{NC} \Delta 	o N\gamma$                | 12.4                | <b>3.4</b>           |
| <b>External Events</b>                               | <b>6.2</b>          | <b>2.6</b>           |
| Other $\stackrel{(-)}{\nu_{\mu}}$                    | 7.1                 | 4.2                  |
| $\nu_e^{(-)}$ from $\mu^{\pm}$ Decay                 | 13.5                | 31.4                 |
| $\stackrel{(-)}{\nu_e}$ from $K^{\pm}$ Decay         | 8.2                 | 18.6                 |
| $\stackrel{(-)}{\nu_e}$ from $K_L^0$ Decay           | 5.1                 | 21.2                 |
| Other $\stackrel{(=)}{\nu_e}$                        | 1.3                 | <b>2.1</b>           |
| Total Background                                     | 99.5                | 98.1                 |
| $0.26\% \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ | 9.1                 | 29.1                 |

## Data in antineutrino oscillation search

- 475 MeV < E < 1250 MeV:
  - 99.1±9.8(syst) expected after fit constraints
  - 120 observed
  - Raw counting excess significance is 1.5σ
- Also see small excess at low energy, consistent with neutrino mode excess if attributed to neutrino contamination in  $\overline{\nu}$  beam



#### Electron antineutrino appearance oscillation results

- Results for **5.66E20 POT**
- Maximum likelihood fit for *simple two-neutrino model*
- Oscillation hypothesis preferred to background-only at 99.4% confidence level.
- E>475 avoids question of lowenergy excess in neutrino mode.
- Signal bins only:
  - P<sub>x2</sub>(null)= 0.5%
  - $P_{\chi 2}$ (best fit)= ~10%

•Submitted to PRL •arXiv: 1007.5510



### Future sensitivity in V data

- MiniBooNE approved for a total of 1x10<sup>21</sup> POT
- Potential 3σ significance assuming best fit signal
- Systematics limited at about 2x10<sup>21</sup> POT



### Conclusions

- Cross-sections:
  - MiniBooNE has most precise measurements of top five interaction modes on carbon; only differential and double-differential cross-sections in some modes
  - Some disagreements with most common nuclear models?
- Oscillation searches
  - Significant  $v_e$  (~3  $\sigma$ ) and  $\overline{v}_e$  (~2.8  $\sigma$ ) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE
  - The two modes do not appear to be consistent with a simple two-flavor neutrino model
  - Antineutrino results still heavily statistics-limited; MiniBooNE plans to accumulate more data until the goal of 10<sup>21</sup> protons on target is reached