Lepton Flavor Violation II. The New Physics Flavor Puzzle

SSI₂₀₁₀: Neutrinos – Nature's mysterious messengers SLAC, 10 August 2010

Yossi Nir (Weizmann Institute of Science)

Lepton Flavor Violation

Plan of Lectures

- 1. The (extended) Standard Model flavor puzzle
- 2. The New Physics flavor puzzle
 - The NP flavor puzzle
 - The SUSY flavor puzzle
 - LFV at ATLAS/CMS
- 3. Leptogenesis

Lepton Flavor Violation

The NP flavor puzzle

The SM = Low energy effective theory

- 1. Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{19} \text{ GeV}$
- 2. $m_{\nu} \neq 0 \Longrightarrow \Lambda_{\text{Seesaw}} \le 10^{15} \text{ GeV}$
- 3. m_H^2 -fine tuning; Dark matter = WIMP $\implies \Lambda_{NP} \sim \text{TeV}$

- The SM = Low energy effective theory
- Must write non-renormalizable terms suppressed by $\Lambda_{\rm NP}^{d-4}$

•
$$\mathcal{L}_{d=5} = \frac{Z_{ij}^{\nu}}{\Lambda_{\text{seesaw}}} L_i L_j \phi \phi$$

• $\mathcal{L}_{d=6}$ contains many flavor changing operators

New Physics - I

• The effects of new physics at a high energy scale $\Lambda_{\rm NP}$ can be presented as higher dimension operators

• For example, we expect the following dimension-six operators: $\mathcal{L}_{d=6} \supset \sum_{i \neq j} \frac{z_{ij}^{ee}}{\Lambda_{\rm NP}^2} (\overline{\ell_{Lj}} \gamma_{\mu} \ell_{Li}) (\overline{e_L} \gamma_{\mu} e_L)$

• New contribution to
$$\ell_i \to \ell_j e^+ e^-$$

$$B_{\ell_i \to \ell_j e^+ e^-} \equiv \frac{\text{BR}(\ell_i \to \ell_j e^+ e^-)}{\text{BR}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{(|z_{ij}^{ee}| / \Lambda_{\text{NP}}^2)^2}{G_F^2/2}$$

- Given an upper bound on $B_{ij} \Longrightarrow$ an upper bound on $z_{ij}^{ee}/\Lambda_{\rm NP}^2$
- Generic flavor structure $\equiv z_{ij}^{ee} \sim 1$ or, perhaps, loop factor

The NP flavor puzzle

New Physics - II

• Another example:

$$\mathcal{L}_{d=6} \supset \frac{ev z_{\mu e}^{\gamma M}}{\Lambda_{\rm NP}^2} \ \overline{\ell_i} \sigma_{\mu\nu} F^{\mu\nu} P_M \ell_j$$

- New contribution to $\ell_i \to \ell_j \gamma$ $B_{\ell_i \to \ell_j \gamma} \equiv \frac{\mathrm{BR}(\ell_i \to \ell_j \gamma)}{\mathrm{BR}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{48\pi^3 \alpha v^2}{G_F^2 m_{\ell_i}^2} \frac{|z_{ij}^{\gamma L}|^2 + |z_{ij}^{\gamma R}|^2}{\Lambda_{\mathrm{NP}}^4}$
- Given an upper bound on $B_{ij} \Longrightarrow$ an upper bound on $z_{ij}^{\gamma M} / \Lambda_{\rm NP}^2$
- Generic flavor structure $\equiv z_{ij}^{\gamma} \sim \frac{1}{16\pi^2}$

The NP flavor puzzle

Some data

$B_{\mu^- \to e^- e^+ e^-}$	$< 1.0 \times 10^{-12}$
$B_{\tau^- \to e^- e^+ e^-}$	$<2.0\times10^{-7}$
$B_{\tau^- \to \mu^- e^+ e^-}$	$< 1.6 \times 10^{-7}$
$B_{\mu^- \to e^- \gamma}$	$< 1.2 \times 10^{-11}$
$B_{\mu^- \to e^- \gamma}$ $B_{\tau^- \to e^- \gamma}$	$< 1.2 \times 10^{-11}$ $< 6.2 \times 10^{-7}$

High Scale?

- For $z_{ij}^{ee} \sim 1$: $\Lambda_{\rm NP} \gtrsim B^{-1/4} \times 350 \text{ GeV}$
- For $z_{ij}^{\gamma M} \sim 1/16\pi^2$: $\Lambda_{\rm NP} \gtrsim B^{-1/4} (m_{\mu}/m_{\ell_i})^{1/2} \times 1.7 \text{ TeV}$

	$\Lambda_{ m NP}\gtrsim$
$B_{\mu^- \to e^- e^+ e^-}$	$350 { m ~TeV}$
$B_{\tau^- \to e^- e^+ e^-}$	$17 { m ~TeV}$
$B_{\tau^- \to \mu^- e^+ e^-}$	$17 { m ~TeV}$
$B_{\mu^- \to e^- \gamma}$	$900 { m TeV}$
$B_{\tau^- \to e^- \gamma}$	$15 { m ~TeV}$
$B_{\tau^- \to \mu^- \gamma}$	$19 { m TeV}$

The NP flavor puzzle

High Scale

- For generic lepton flavor parameters, $\Lambda_{\rm NP} \gtrsim 10^3 {\rm ~TeV}$
- For generic quark flavor parameters, $\Lambda_{\rm NP} \gtrsim 10^4 {\rm ~TeV}$

Did we misinterpret the Higgs fine tuning problem?

Did we misinterpret the dark matter puzzle (it is not WIMP)?

The NP flavor puzzle

Small (hierarchical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1$ TeV, $z_{ij}^{ee} \lesssim 10 B_{ij}^{1/2}$; $16\pi^2 z_{ij}^{\gamma M} \lesssim 0.3 B_{ij}^{1/2} (m_{\ell_i}/m_{\mu})$

ij	Observable	$z^{ee}_{ij} \lesssim$
μe	$B_{\mu^- \to e^- e^+ e^-}$	$8.2 imes 10^{-6}$
au e	$B_{\tau^- \to e^- e^+ e^-}$	3.7×10^{-3}
$ au\mu$	$B_{\tau^- \to \mu^- e^+ e^-}$	3.3×10^{-3}
ij	Observable	$16\pi^2 z_{ij}^{\gamma M} \lesssim$
μe	$B_{\mu^- \to e^- \gamma}$	$1.3 imes 10^{-6}$
au e	$B_{\tau^- \to e^- \gamma}$	4.4×10^{-3}
$ au\mu$	$B_{\tau^- \to \mu^- \gamma}$	$2.9 imes 10^{-3}$

Small (hierarchical?) flavor parameters

For $\Lambda_{\rm NP} \sim {\rm TeV}$,

- $z_{\mu e} < 10^{-5}$
- $z_{\tau\ell} < 10^{-2}$
- $z_{sd} < 10^{-7}$

The flavor structure of NP@TeV must be highly non-generic

How? Why? = The NP flavor puzzle

How does the SM ($\Lambda_{\rm SM} \sim m_W$) do it?

		$z_{ij}\sim$	$z^{ m SM}_{ij}$
$\Delta m_K/m_K$	7.0×10^{-15}	5×10^{-9}	$lpha_2^2 y_c^2 V_{cd} V_{cs} ^2$
$\Delta m_D/m_D$	8.7×10^{-15}	5×10^{-9}	Long Distance
$\Delta m_B/m_B$	6.3×10^{-14}	7×10^{-8}	$lpha_2^2 y_t^2 V_{td}V_{tb} ^2$
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}	2×10^{-6}	$lpha_2^2 y_t^2 V_{ts} V_{tb} ^2$
		$rac{\mathcal{I}m(z_{ij})}{ z_{ij} }\sim$	$rac{\mathcal{I}m(z_{ij}^{ ext{SM}})}{ z_{ij}^{ ext{SM}} }$
ϵ_K	2.3×10^{-3}	$\mathcal{O}(0.01)$	$\mathcal{I}m \frac{y_t^2 (V_{td}^* V_{ts})^2}{y_c^2 (V_{cd}^* V_{cs})^2} \sim 0.01$
A_{Γ}	≤ 0.004	≤ 0.2	0
$S_{\psi K_S}$	0.67 ± 0.02	$\mathcal{O}(1)$	$\mathcal{I}m\frac{V_{tb}V_{td}^*}{V_{tb}^*V_{td}}\frac{V_{cb}^*V_{cd}}{V_{cb}V_{cd}^*}\sim 0.7$
$S_{\psi\phi}$	≤ 1	≤ 1	$\mathcal{I}m\frac{V_{tb}V_{ts}^*}{V_{tb}^*V_{ts}}\frac{V_{cb}^*V_{cs}}{V_{cb}V_{cs}^*}\sim 0.02$

• Does the new physics know the SM Yukawa structure? (MFV)

What does the ESM do?

	$z_{ij}^{\max}(\Lambda \sim m_W)$	z_{ij}^{ESM}	With $U_{e3} \sim 0.1$
$z^{ee}_{\mu e}$	8×10^{-8}	$\frac{\alpha_2^2}{m_W^2} (U_{e2} U_{\mu 2}^* \Delta m_{21}^2 + U_{e3} U_{\mu 3}^* \Delta m_{32}^2)$	$3 imes 10^{-29}$
$z^{ee}_{ au e}$	4×10^{-5}	$\frac{\alpha_2^2}{m_W^2} (U_{e2} U_{\tau 2}^* \Delta m_{21}^2 + U_{e3} U_{\tau 3}^* \Delta m_{32}^2)$	3×10^{-29}
$z^{ee}_{ au\mu}$	3×10^{-5}	$\frac{\alpha_2^2}{m_W^2} (U_{\mu 2} U_{\tau 2}^* \Delta m_{21}^2 + U_{\mu 3} U_{\tau 3}^* \Delta m_{32}^2)$	4×10^{-28}
$z_{\mu e}^{\gamma L}$	8×10^{-11}	$\frac{\alpha_2 y_e}{4\pi m_W^2} \left(U_{e2} U_{\mu 2}^* \Delta m_{21}^2 + U_{e3} U_{\mu 3}^* \Delta m_{32}^2 \right)$	2×10^{-34}
$z^{\gamma L}_{ au e}$	3×10^{-7}	$\frac{\alpha_2 y_e}{4\pi m_W^2} (U_{e2} U_{\tau 2}^* \Delta m_{21}^2 + U_{e3} U_{\tau 3}^* \Delta m_{32}^2)$	2×10^{-34}
$z^{\gamma L}_{ au\mu}$	2×10^{-7}	$\frac{\alpha_2 y_{\mu}}{4\pi m_W^2} (U_{\mu 2} U_{\tau 2}^* \Delta m_{21}^2 + U_{\mu 3} U_{\tau 3}^* \Delta m_{32}^2)$	6×10^{-31}
$z^{\gamma R}_{\mu e}$	8×10^{-11}	$\frac{\alpha_2 y_{\mu}}{4\pi m_W^2} \left(U_{e2} U_{\mu 2}^* \Delta m_{21}^2 + U_{e3} U_{\mu 3}^* \Delta m_{32}^2 \right)$	4×10^{-32}
$z^{\gamma R}_{ au e}$	3×10^{-7}	$\frac{\alpha_2 y_{\tau}}{4\pi m_W^2} (U_{e2} U_{\tau 2}^* \Delta m_{21}^2 + U_{e3} U_{\tau 3}^* \Delta m_{32}^2)$	$7 imes 10^{-31}$
$z^{\gamma R}_{ au\mu}$	2×10^{-7}	$\frac{\alpha_2 y_\tau}{4\pi m_W^2} (U_{\mu 2} U_{\tau 2}^* \Delta m_{21}^2 + U_{\mu 3} U_{\tau 3}^* \Delta m_{32}^2)$	1×10^{-29}

• The ESM LFV rates are negligibly tiny

The NP flavor puzzle

Intermediate summary

- The SM predicts no LFV
- The ESM predicts unobservably small LFV
- Any signal of LFV in charged lepton decays an unambiguous signal of new physics beyond the ESM ($\Lambda_{\rm NP} \lesssim 10^3 {\rm ~TeV}$)
- The flavor structure of new physics at the TeV scale must be highly non-generic (\implies The NP flavor puzzle)
- The NP flavor puzzle guarantees that such an LFV signal will provide important information about the NP

Lepton Flavor Violation

The Supersymmetric Flavor Puzzle

The NP flavor Puzzle

The $\mu \to e\gamma$ challenge

Take, for example, the contribution from the first two generations of slepton doublets to $\mu \to e\gamma$:

$$\Lambda_{\rm NP} = m_{\tilde{L}}; \quad z_{\mu e}^{\gamma L} \simeq \left(\frac{\alpha_2}{60\pi} \frac{m_{\mu} \tan \beta}{v}\right) \frac{\Delta m_{21}^2}{m_{\tilde{L}}^2} K_{e2}^L K_{\mu 2}^{L*}$$
$$\implies \left(\frac{300 \text{ GeV}}{m_{\tilde{L}}}\right)^2 \times \frac{\Delta m_{21}^2}{m_{\tilde{L}}^2} \times \sin 2\theta \lesssim 10^{-3}$$

How can Supersymmetry do it?

$$\frac{\text{TeV}}{\tilde{m}} \times \frac{\Delta \tilde{m}_{ij}^2}{\tilde{m}^2} \times K_{ij} \ll 1$$

Why? = The SUSY flavor puzzle

How can Supersymmetry do it?

$$\frac{\text{TeV}}{\tilde{m}} \times \frac{\Delta \tilde{m}_{ij}^2}{\tilde{m}^2} \times K_{ij} \ll 1$$

Why? = The SUSY flavor puzzle

- Solutions:
 - Heaviness: $\tilde{m} \gg 1$ TeV
 - Degeneracy: $\Delta \tilde{m}_{ij}^2 \ll \tilde{m}^2$
 - Alignment: $K_{ij} \ll 1$

- Split Supersymmetry
- Gauge-mediation
- Horizontal symmetries

Gauge Mediation – Squarks

- Δm_K , Δm_D :
 - The first two squark generations are quasi-degenerate
 - Could be the result of alignment (~ $\sin \theta_C$) and RGE $(\frac{\Delta m^2}{m^2} \sim 0.1)$
 - Natural with gauge mediation $(\frac{\Delta m^2}{m^2} \sim y_c^2 \sim 10^{-4})$
- Gauge mediation:

•
$$\widetilde{M}_{\widetilde{q}_L}^2 = \widetilde{m}^2 \mathbf{1} + D_{q_L} \mathbf{1} + v_q^2 Y_q Y_q^{\dagger}$$

- RGE: $\tilde{m}_{\tilde{Q}_L}^2(m_Z) = \tilde{m}^2(r_3 \mathbf{1} + c_u Y_u Y_u^{\dagger} + c_d Y_d Y_d^{\dagger})$
- The only source of flavor violation = The SM Yukawa couplings
- An example of minimal flavor violation (MFV)
- MFV solves all SUSY flavor problems

<u>The seesaw mechanism - a reminder</u>

- Add $N_i(1,1)_0$
- $\mathcal{L}_{\text{leptons}} = Y_{ij}^e \overline{L_i} \phi_d E_j + Y_{ij}^\nu \overline{L_i} \phi_u N_j + M_j N_j N_j$
- Gives light neutrino masses $(m_{\nu})_{ij} = \langle \phi_u \rangle^2 Y_{ik}^{\nu} Y_{jk}^{\nu} M_k^{-1}$
- Flavor: $SU(3)_L \times SU(3)_E \times SU(3)_N$ completely broken
- $15_R + 6_I$ lepton flavor parameters (compared to $9_R + 3_I$ in the ESM)

Gauge Mediation – Sleptons

- $\mu \rightarrow e\gamma, \ \mu \rightarrow eee:$
 - Suggestive: The first two slepton gen's quasi-degenerate
 - Alignment of $\mathcal{O}(|U_{e2}|)$ and RGE do not help
 - Natural with gauge mediation
- Gauge mediation (GM) with $\Lambda_{\text{seesaw}} < \Lambda_{\text{GM}}$:
 - $\widetilde{M}_{\widetilde{\ell}_L}^2 = \widetilde{m}^2 \mathbf{1} + D_{\ell_L} \mathbf{1} + v_d^2 Y^e Y^{e\dagger}$
 - LFV from RGE: $(\tilde{m}_{\tilde{L}_L}^2)_{ij} \simeq -\frac{3\tilde{m}^2}{8\pi^2} Y_{ik}^{\nu} Y_{jk}^{\nu*} \ln\left(\frac{\Lambda_{\rm GM}}{M_k}\right)$
 - $SU(3)_L \times SU(3)_N$ broken by Y^e, Y^{ν}, M_N
 - Observable LFV effects possible
 - Even with minimal lepton flavor violation (MLFV), we can obtain new information on flavor

MFV + SUSY

- Squarks:
 - Spectrum: 2+1
 - Decays: $2 \rightarrow u, d, s, c, 1 \rightarrow t, b$
- Sleptons, $\Lambda_{\text{seesaw}} > \Lambda_{\text{mediation}}$:
 - spectrum: 3
 - Decays: flavor diagonal
- Sleptons, $\Lambda_{\text{seesaw}} < \Lambda_{\text{mediation}}$:
 - $-Y^{\nu}$, M_N may leave a footprint on the slepton spectrum and flavor decomposition

Lepton Flavor Violation

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- and flavor factories observe no NP...

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- but flavor factories observe NP...
 - We may have misinterpreted the fine-tuning problem
 - We may have misinterpreted the dark matter puzzle
 - Flavor will provide the only clue for an accessible scale of NP

Flavor Physics at the LHC era

- ATLAS/CMS will, hopefully, observe NP at $\Lambda_{\rm NP} \lesssim {\rm TeV}$;
- If the NP couple to SM quarks and/or leptons There are new flavor parameters that can, in principle, be measured
- In combination with flavor factories, we may...
 - Understand how the NP flavor puzzle is (not) solved
 - Probe NP at $\Lambda_{\rm NP} \gg {\rm TeV}$
 - Get hints about the solution to the SM flavor puzzle

Gauge+Gravity Mediation

- Example: High (but not too high) scale gauge mediation
 - Gravity mediation sub-dominant but non-negligible

•
$$r = \frac{\text{gravity-med}}{\text{gauge-med}} \sim \left(\frac{m_M}{m_P}\right)^2 \left(\frac{4\pi}{\alpha_2(m_M)}\right)^2 \frac{3}{8n_M}$$

•
$$\widetilde{M}_{\tilde{L}_L}^2(m_M) = \tilde{m}_{\tilde{L}_L}^2(\mathbf{1} + rX_{\tilde{L}_L})$$

• Degeneracy depends on r

Assume: The flavor structure of X determined by FN:

•
$$X_{\tilde{L}_L} \sim \begin{pmatrix} 1 & U_{e2} & U_{e3} \\ \cdot & 1 & U_{\mu 3} \\ \cdot & \cdot & 1 \end{pmatrix}; \quad X_{\tilde{E}_R} \sim \begin{pmatrix} 1 & \frac{m_e/m_\mu}{U_{e2}} & \frac{m_e/m_\tau}{U_{e3}} \\ \cdot & 1 & \frac{m_\mu/m_\tau}{U_{\mu 3}} \\ \cdot & \cdot & 1 \end{pmatrix}$$

• Mixing depends only on X which is related to the SM flavor

Solving the NP Flavor Puzzle

If ATLAS/CMS observe sleptons...

- Determine the slepton mass scale (\tilde{m})
- Determine the slepton mass splitting $(m_{\tilde{\ell}_i} m_{\tilde{\ell}_i})$
- Determine the sfermion flavor decomposition (K_{ij}^e)

Learn how the SUSY flavor suppression is obtained

Physics at $\Lambda_{\rm NP} \gg \Lambda_{\rm LHC}$

If ATLAS/CMS determine slepton mass splittings...

- Find the ratio between gravity- and gauge-mediated contributions (r)
- Determine the messenger scale of gauge mediation (m_M)
- Find the hierarchy between the GMSB and see-saw scales

Solving the SM Flavor Puzzle?

If ATLAS/CMS determine slepton flavor decomposition...

- Determine X of $\tilde{M}^2 = \tilde{m}^2(\mathbf{1} + rX)$
- Does X have the FN-predicted structure?

The SUSY flavor plane

Flavor Factories

The SUSY flavor plane

Flavor Factories

FF+ATLAS/CMS

Gauge+Gravity Mediation

$$\chi_1^0 \to \tilde{\ell}_1^{\pm} \ell_1^{\mp}$$

$$\chi_1^0 \to \tilde{\ell}_2^{\pm} \ell_2^{\mp}$$

$$\tilde{\ell}_2^{\pm} \to \tilde{\ell}_1^{\pm} X^{\pm\mp}$$
or
$$\tilde{\ell}_2^{\pm} \to \tilde{\ell}_1^{\mp} X^{\pm\pm}$$

LFV

Measuring slepton mass splitting

Measuring slepton flavor decomposition

[Feng, Lester, Nir, Shadmi et al., PRD77(2008)076002; PRD80(2009)114004; JHEP01(2010)047]

Lessons from $\tilde{\ell}_1, e, \mu$

- Determine Δm_{21} and $\sin 2\theta_{12}$: Is it consistent with $\mu \to e\gamma$? How the SUSY flavor problem is solved
- Determine $\Delta m_{21}, \Delta m_{54}, \ldots$: What is messenger scale of gauge mediation (M_m) ? Probe physics at $M_m \sim 10^{15}$ GeV
- Determine $|K_{e2}/K_{\mu2}|$: Is the FN mechanism at work? How the SM flavor puzzle is solved

Vector-like leptons and MLFV

- \bullet Imagine: Vector-like lepton doublets with $m \lesssim TeV$
 - Avoid large FCNC by MLFV
 - The only LFV comes from $Y^E = \text{diag}(y_e, y_\mu, y_\tau)$
 - The heavy mass spectrum: quasi-degeneracy or hierarchy $\propto Y^E$
 - The heavy-to-light couplings:
 universal or hierarchical (affects the lifetimes)
 - The heavy-to-light couplings: flavor-diagonal

What will we learn?

Vector-like leptons and MLFV

- $N_{ee} \neq N_{\mu\mu}$ and/or $N_{e\mu} \neq 0$: Either MLFV with ν -related spurions or non-MLFV
- $N_{ee} = N_{\mu\mu}$ and $N_{e\mu} = 0$: Approximate $U(1)_e \times U(1)_\mu$ Plus $m_{\chi_e} \approx m_{\chi_{\mu}}$: Approximate $U(2)_{e\mu}$

[Gross, Grossman, Nir, Vitells, PRD81(10)055013 [1001.2883]]

The role of flavor factories (FF)

ATLAS/CMS and flavor factories give complementary information

- In the absence of NP at ATLAS/CMS, flavor factories will be crucial to find $\Lambda_{\rm NP}$
- Consistency between ATLAS/CMS and FF is necessary to understand the NP flavor puzzle
- NP in $c \to u$? $s \to d$? $b \to d$? $b \to s$? $t \to c$? $t \to u$? $\mu \to e$? $\tau \to \mu$? $\tau \to e$?
 - MFV?
 - Structure related to SM?
 - Structure unrelated to SM?
 - Anarchy?

[Hiller, Hochberg, Nir, JHEP0903(09)115; JHEP1003(10)079 [1001.1513]]

Thanks to my high- p_t -physics collaborators:

Yuval Grossman, YN, Jesse Thaler, Tomer Volansky, Jure Zupan Phys. Rev. D76 (2007) 096006 [arXiv:0706.1845]

Jonathan Feng, Christopher Lester, YN, Yael Shadmi Phys. Rev. D77 (2008) 076002 [arXiv:0712.0674]

Jonathan Feng, Sky French, Christopher Lester, YN, Yael Shadmi Phys. Rev. D80 (2009) 114004 [arXiv:0906.4215]

Feng, French, Galon, Lester, YN, Shadmi, Sanford, Yu **JHEP 1001 (2010) 047** [arXiv:0910.1618]

Eilam Gross, Daniel Grossman, YN, Ofer Vitells Phys. Rev. D81 (2010) 055013 [arXiv:1001.2883]

Thanks to my students:

Kfir Blum, Daniel Grossman, Yonit Hochberg