The Extragalactic Sky in TeV Gamma Rays

Frank Krennrich, Iowa State University
Outline

- Overview of extragalactic TeV sources.
- Discovery of starburst galaxies.
- Probing relativistic jets in TeV blazars.
- Intermediate BL Lac objects.
- Cosmology with blazars.
- Quantum gravity tests.
- Radio galaxies.
- Summary.
Science Motivations:

Radio galaxies:

GRBs: Jets -

EBL in IR

Blazars: Jets

Dark Matter

...?

Starburst galaxies -

Starburst galaxies -

Science Motivations:

Dark Matter

Hadrons

Blazars: Jets

Unidentified GRBs: Jets - EBL in IR

Radio galaxies: Jets

Starburst galaxies -

July 16 2009, TeVPA09, SLAC The Extragalactic Sky in TeV Gamma Rays
Recent additions:

- M82, NGC253 starburst galaxies
- Centaurus A, 3C66B radio galaxies
- PKS1424+240, S5 0716+714, RGB 0710+591 blazars
- LMC Pulsar wind nebula outside Milky Way

TeVCAT: Courtesy: S. Wakely, UChicago
Starburst Galaxies: M82

- M82 is the prototype starburst galaxy
- Distance ~ 3.9 Mpc
- Diameter ~ 1’
- SMBH ~ 3×10^7 M_{solar}
- Interacts with group of galaxies (M81)
- HST: 200 massive star clusters
- High supernova rate ~ 0.1 - 0.3 per year
- High gas density 150 particles/cm3

-> excellent candidate for cosmic ray interactions & gamma ray emission.

-> probing paradigm that SNRs are the origin of C.R.s.
Starburst Galaxies: M82

- **VERITAS data ~ 137 h livetime**

 only astronomical dark time, large zenith angle ~ 39°

 increased E_{thres}

 bad weather removed

- **Standard VERITAS analysis (“hard cuts”)**

 $E_{\text{thres}} \sim 700$ GeV

 cuts a priori optimized on Crab

 hard spectrum expected from theory

 but we count for 3 trials (standard, hard & soft)

- **Point-like excess of 91 γ; 5.0 σ (pre-trial)**

 3 independent analyses

 many systematic checks performed

- **Post-trial: 4.8 σ (7.7×10^{-7})**

 steady signal

 excess consistent with instrument PSF

- **M82 weakest source ever detected @ VHE**

 0.9% of Crab

 Gamma-ray rate: 0.7 γ/hour

Acciari et al. 2009, subm. to Nature
Starburst Galaxies: M82

- Spectrum 875 GeV to 5 TeV
- \(\frac{dN}{dE} \sim (E / \text{TeV})^{-\Gamma} \)
 \[\Gamma = 2.5 \pm 0.6 \]
- VHE flux is close to predictions incl. leptonic & hadronic channels
- Origin: hadronic or leptonic?

\[pp \rightarrow \pi^0 \rightarrow \gamma \gamma \]
\[pp \rightarrow \pi^\pm \rightarrow e^\pm \ldots \]

radio

20 GeV with \(\Gamma = 2.3 \), TeV flux OK.

\[e^- \quad \rightarrow \gamma \quad \text{synchr.} \]
\[e^\gamma_{\text{soft}} \rightarrow \gamma \quad \text{TeV} \]

cutoff

Sensitivity < 1 mCrab needed
VERITAS: pathfinder for next generation instruments such as AGIS, CTA

Acciari et al. 2009, subm. to Nature
Relativistic Jets in Blazars

- "Standard Model" of AGN Physics
 SMBH
 Accretion disk
 Relativistic jet

- Point of view changes appearance
 Blazar
 Quasar
 Radio galaxy

- Physics questions
 Black hole - jet - connection
 Acceleration mechanism
 Emission mechanism
 Maximum energy
 hadrons and leptons?
 UHE cosmic ray connection?
 Axion emission?
PKS 2155-304

- **HBL at z ~ 0.116**
 EGRET source
detected by HESS

- **“Gigantic” flare ~ 11 Crab**
 HESS: 6.5 hrs of observations July 29-30 2006
 ~ 30,000 photons
 Chandra observations 30 ks
 emission dominated in TeV regime

- **TeV/X-ray correlation**
 contemporaneous coverage
 correlation, no time lags
 amplitude of variations ~ 22 (TeV),
 ~ 2 (X-ray),
 ~ 1.15 (optical)
cubic relation between TeV/X-ray variations

- **One-zone SSC Model**
inconsistent with one zone modell

- **Conclusions**
Compton dominated emission component
inconsistent with one-zone SSC

PKS 2155-304

- **HBL at z ~ 0.116**
EGRET source
detected by HESS

- **“Gigantic” flare ~ 11 Crab**
HESS: 6.5 hrs of observations July 29-30 2006
~ 30,000 photons
Chandra observations 30 ks
emission dominated in TeV regime

- **TeV/X-ray correlation**
contemporaneous coverage
correlation, no time lags
amplitude of variations ~ 22 (TeV),
~ 2 (X-ray),
~ 1.15 (optical)
cubic relation between TeV/X-ray variations

- **One-zone SSC Model**
inconsistent with one zone model

- **Conclusions**
Compton dominated emission component
inconsistent with one-zone SSC

PKS 2155-304 with Fermi+HESS

- **HESS**, Fermi, RXTE, optical

 11 days, Aug. 2008

 low flux state, but detectable

- **SED optical, X-ray, GeV - TeV**

 nightly flux variations in optical, X-ray, TeV

 power comparable in X-ray, GeV, TeV

 TeV/optical correlate

 TeV/X-ray do not!

- **Interpretation**

 one-zone SSC model

 X-ray synchrotron from high energy electrons

 -> IC scattering in Klein Nishina regime

 -> TeV emission not changed

 optical synchr. emission from low E electrons

 -> TeV and optical emission correlated

 -> GeV emission should also correlate but does not!

 one-zone SSC models can explain SED but not the variability pattern!
PKS 2155-304 with Fermi+HESS

- **HESS, Fermi, RXTE, optical**
 - 11 days, Aug. 2008
 - Low flux state, but detectable

- **SED optical, X-ray, GeV - TeV**
 - Nightly flux variations in optical, X-ray, TeV
 - Power comparable in X-ray, GeV, TeV
 - TeV/optical correlate
 - TeV/X-ray do not!

- **Interpretation**
 - One-zone SSC model
 - X-ray synchrotron from high energy electrons
 - IC scattering in Klein Nishina regime
 - TeV emission not changed
 - Optical synchrotron emission from low E electrons
 - TeV and optical emission correlated
 - GeV emission should also correlate but does not!
 - One-zone SSC models can explain SED but not the variability pattern!
Intermediate BL Lacs

LBL:
powerful, substantial external radiation fields

IBL: fall between

HBL:
low power, weak external radiation fields

July 16 2009, TeVPA09, SLAC The Extragalactic Sky in TeV Gamma Rays
W Comae

- **IBL (intermediate BL Lac)**
 - discovered in radio (X-rays), 1971 (1980)
 - seen by EGRET: 0.1 - 10 GeV
 - $z = 0.102$
 - promising candidate for TeV

- **VERITAS discovery of TeV emission**
 - 4.9σ in 40 hours
 - outburst March 2008 (> 8σ detection)
 - quasi-simultaneous X-ray data

$\sigma_t = 1.29 \pm 0.28$ days
W Comae

- **One-zone SSC**
 weak magnetic field
- **External Compton**
 $B \sim 0.3$ Gauss
- **GeV - TeV coverage**
 distinguish between the two

3C66A

- **IBL**
 seen by EGRET and Fermi (#1759)
z = 0.44 (highly uncertain)
promising candidate for TeV
Crimean group reported 5.1 σ at 1 TeV (1996-98)

- **VERITAS detects TeV emission**
 21 σ in 33 hours, ~ 1800 γ; $E_{\text{thres}} \sim 120$ GeV

- **MAGIC detects 3C66B (radio galaxy)**
at 0.12 degree off-set from 3C66A (not contemp.)

- **Two sources or just one?**
data is not contemporaneous!
VERITAS detection is unambiguously 3C66A
3C66A: Fermi & VERITAS

- **Fermi data**
 Sept. 1 - Dec. 31 2008
 0.1° x 0.1° pixel map
 Fermi & VERITAS identify 3C66A
 Fermi cannot exclude small contribution from 3C66B

- **PAIRTEL/Chandra/Swift/VERITAS**
 SED peaks in GeV regime

- **SED modeling**
 one-zone SSC model
 EC+SSC
 high ambient seed population in IBLs
 target for IC scattering

PKS 1424+240

- **IBL detected by Fermi**
 0.2 - 100 GeV
 $\Gamma = 1.8 \pm 0.07$
 promising target for IACTs
 Fermi & VERITAS identify 3C66A
 Fermi cannot exclude small contribution from 3C66B

- **TeV emission discovered by VERITAS**
 no evidence for variability
 7.5 σ in full data set

- **First TeV discovery motivated by Fermi**
 $E > 1$ GeV useful to find new TeV blazars with IACTs

- **IBLs: strong link between Fermi/IACTs**
 promising for many more GeV-TeV spectra
 AGN population studies
 EBL studies (UV-optical-near IR)
Population Studies

• **Blazar discovery program**

 X-ray selected BL Lacs

 ~ 60 blazars observed

 excluded detections

 remaining objects stacked (120 hours)

• **Combined excess of 49 blazars**

 ~ 4.8 σ

 480 events

Physics: EBL/Cosmology

- probe diffuse Cosmic IR-Background
- EBL poorly understood: near - mid IR
- TeV beam: $\gamma + \gamma \rightarrow e^+ + e^-$ interaction
- measure CIRB: absorption(z)

Star/galaxy Formation $z<5$
AGNs $z<5$
First stars $z \sim 7 - 30$
Relics?
Truly diffuse Component?

July 16 2009, TeVPA09, SLAC The Extragalactic Sky in TeV Gamma Rays
Upper Limits - Blazar spectra

- Hard spectra blazars exhibit unusually hard spectra for given z (0.12 - 0.22) intrinsic spectra by considering EBL lower limits
- $\Gamma \sim 1.5$ already reached by combining lower limits
- $\Gamma = 1.5$ not a speed limit, or new physics?

Aharonian et al. 2006, Nature, 440, 1018

1ES0347-121
1ES1101-232
1ES1218+30.4
H2356-309
1ES0229+200
1ES0229+200
RGB J0710+591

$\Gamma_{\text{obs}} \sim 2.5 - 3.1$
“Time of flight” test: $c = \text{const}$?

\[t_1 = \frac{L}{c} \left[1 - \frac{E_1}{E_{QG}} \right] \]
\[t_2 = \frac{L}{c} \]

\[\Delta t \approx \left(\frac{L}{c} \right) \left(\frac{E}{E_{QG}} \right) \]

$E_{QG} > 7.2 \times 10^{17} \text{ GeV}$

PKS2155-304

Biller et al. 1999, PRL, 83, 2108

Whipple Collab.

Abdo et al. 2009, Science, 323, 1688

Fermi Collab.

MAGIC Collab.
“Time of flight” test: $c = \text{const}$?

\[t_1 = \frac{L}{c} \left[1 - \frac{E_1}{E_{QG}} \right] \]
\[t_2 = \frac{L}{c} \]
\[\Delta t \approx \left(\frac{L}{c} \right) \left(\frac{E}{E_{QG}} \right) \]

PKS2155-304 no dispersion!

\[E_{QG} > 7.2 \times 10^{17} \text{ GeV} \]

Abdo et al. 2009, Science, 323, 1688
Fermi Collab.

Biller et al. 1999, PRL, 83, 2108
Whipple Collab.

HESS: Aharonian et al. 2008,
PRL, 101.170402
HESS

MAGIC Collab.

July 16 2009, TeVPA09, SLAC The Extragalactic Sky in TeV Gamma Rays
Radio Galaxies: M87

- Nearby giant radio galaxy, 16 Mpc
 SMBH $\sim 6 \times 10^9 M_{\odot}$
 Jet angle $\sim 15 - 30$ deg. (not a blazar)
 resolved jet (radio, optical X-ray)
 variable emission

- TeV emission
 Evidence in Hega data
 Confirmed by HESS, MAGIC, VERITAS
 angular resolution of TeV instruments 0.1 deg.
 TeV emission from where?

Radio Galaxies: M87

80 kpc ~ 0.3 deg.

radio (43 GHz, VLBA)

X-ray (Chandra)

optical (V band)

radio (6 cm)
Radio Galaxies: M87

- **Joint TeV campaign:**
 MAGIC, HESS, VERITAS
 Jan. - May 2008
 95 hrs. combined
 MAGIC ToO

- **VLBA movies**
 14 shots in 2008, every 5 days
 ang. resolution 0.2 x 0.4 mas

A

VHE instruments
- • VERITAS
- • MAGIC
- • HESS

Time vs. \(\Phi_{VHE} \) [10^{-12} cm^{-2} s^{-1}]

B

\(\Phi_{VHE} \) [10^{-12} cm^{-2} s^{-1}]

C

\(\Phi_{[43 \text{ GHz}]} \) [Jy]

- • nucleus (r = 1.2 mas)
- • peak flux
- • jet w/o nucleus (1.5-5 mas)
Radio Galaxies: M87

- **Picture?**
 - radio, X-ray and TeV flare are likely related ($P < 0.5\%$).
 - TeV flares on time scales of 1 day: ~ few R_s
 - X-ray quiet at HST-1, but shows a historically high state for core.
 - VLBA flare at core ($30 \times 60 \ R_s$), but slow rise.

- **What does this mean?**
 - Model:
 - we have observed plasma traveling down the jet.
 - transparent at TeV and X-ray energies.
 - region is initially opaque in radio (synchr. Self-absorption).
 - and smoothen the radio flare and a delay in peak.
 - TeV/X-ray emission region well within radio blob.

- TeV emission produced close to the SMBH?

Other Radio Galaxies

- Centaurus A
- Closest active radio galaxy, 3.8 Mpc
 Detection by HESS, & Fermi 5 σ
 future multiwavelength coverage: radio, optical, X-ray

- 3C66B?
- \sim 80 Mpc
 Detection by MAGIC 5.4 σ
 but location is within 2 σ of 3C66A
 open question!

Summary

- TeV γ-ray observations provide a window to extragalactic astronomy at the highest energies with > 30 sources.
- Study of cosmic accelerators: relativistic jets, BH-jet connection, …
- Fermi + IACTs are promising to constrain models.
- Probe cosmological radiation fields and Lorentz invariance.
- Discovery of starburst galaxies: role of supernovae in cosmic-ray accel.
- AGIS/CTA is the natural next step following Fermi & present IACTs.