Experimental review of high-energy $e^- e^+$ and $p \bar{p}$ spectra

Luca Baldini
INFN–Pisa
luca.baldini@pi.infn.it

TeV Particle Astrophysics,
July 15 2009
Measurement of the singly charged component of the cosmic radiation at GeV–TeV energies.

What we measure and what we learn:
- ≈ 10 talks about it in this conference.

Experimental techniques and historical review.
- Bound to be incomplete and not exhaustive.

Prospects for the near future.
Introduction

- **Inclusive spectra:** $e^+ + e^-$ and $\bar{p} + p$
 - Electrons, unlike protons, loose energy rapidly by Synchrotron and Inverse Compton: at very high energy they probe the nearby sources.

- **Charge composition:** $e^+/(e^+ + e^-)$ and $\bar{p}/(\bar{p} + p)$ ratios.
 - e^+ and \bar{p} are produced by the interactions of high-energy cosmic rays with the interstellar gas (secondary production).
 - There might be additional (possibly exotic) sources.

- **Different measurements provide complementary information on the origin, acceleration and propagation of cosmic rays.**
 - All the pieces of the puzzles must fit in a coherent interpretative (multi-messenger) framework.
A QUICK LOOK AT THE AVAILABLE DATA

† Data taken from the Cosmic Ray Database maintained by A. Strong and I. Moskalenko

see http://www.mpe.mpg.de/~aws/propagate.html
Experimental techniques and detectors

Imaging calorimeters
- Cannot distinguish the charge sign (inclusive spectra).
- Background rejection mainly relying on the different topologies of electromagnetic and hadronic showers.
- Typically feature larger acceptance and energy reach (measurement of the inclusive electron spectrum at high energy).

Magnetic spectrometers
- Can distinguish the charge sign \((e^+/(e^+ + e^-))\) and \((\bar{p}/(\bar{p} + p))\) ratios).
- Excellent particle identification—typically include an electromagnetic calorimeter and a TRD or a Čerenkov detector.
- Acceptance and energy reach limited by the magnet’s dimensions and bending power (unless operating as an imaging calorimeter).

But that’s not the end of the story (more about this in a moment).
Basic formalism

- Geometric factor (or aperture, or etendue):

\[G_f(E) = A(E) \cdot \Omega(E) \]

in most cases energy-dependent (effective \(G_f \)), i.e. when:
(i) the acceptance depends on energy (magnetic spectrometers);
(ii) selections are (explicitly or implicitly) energy dependent.

- Exposure factor (or exposure):

\[E_f(E) = G_f(E) \cdot T_{obs} \]

effectively determining the number of counts through:

\[N_{E \geq E_0} = \int_{E_0}^{\infty} \frac{dN(E)}{dE \, dt} E_f(E) \, dE \]
The formalism at work...

The exposure factor determines the statistics. Imaging calorimeters (vs. spectrometers) feature larger G_f. Space (vs. balloon) experiments feature longer livetime.
The exposure factor determines the statistics.
The formalism at work...

The exposure factor determines the statistics.

Imaging calorimeters (vs. spectrometers) feature larger G_f.
The formalism at work...

- The exposure factor determines the statistics.
- Imaging calorimeters (vs. spectrometers) feature larger G_f.
- Space (vs. balloon) experiments feature longer livetime.

Luca Baldini (INFN)
TeV Particle Astrophysics, July 15 2009
Active development for Long Duration and Ultra Long Duration flights ongoing (more than one order of magnitude improvement).
Active development for Long Duration and Ultra Long Duration flights ongoing (more than one order of magnitude improvement).

Complete (multiple) circumpolar trajectories achieved.
Inclusive spectra: $e^+ + e^-$ and $\bar{p} + p$

- p dominate the CR flux, energy measurement is more challenging than background rejection.

- p is the critical source of background for the $e^+ + e^-$ measurement.

\[\frac{e^+}{(e^+ + e^-)} \] and $\frac{\bar{p}}{\bar{p} + p}$ ratios

- Once the charge sign has been identified, the antiparticle competes with the particle of the same sign...

- ...i.e., \bar{p} with e and e^+ with p.
CR measures and backgrounds

Inclusive spectra: $e^+ + e^-$ and $\bar{p} + p$

- p dominate the CR flux, energy measurement is more challenging than background rejection.
- p is the critical source of background for the $e^+ + e^-$ measurement.

- $e^+ / (e^+ + e^-)$ and $\bar{p} / (\bar{p} + p)$ ratios

- Once the charge sign has been identified, the antiparticle competes with the particle of the same sign.
- i.e. \bar{p} with e and e^+ with p.

It is the opinion of the investigators that the e^+ observation is substantially more difficult than the \bar{p} observation [...] For negatively charged particles one has to distinguish \bar{p} from a 20 times higher flux of e^- and from atmospheric mesons. In the case of e^+, however, one must separate the desired particles from protons, which have the same charge and a flux nearly 1000 times as great.

Positron fraction: the early days

<table>
<thead>
<tr>
<th>Year</th>
<th>Detector Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buffington (1972–73) 4–50 GeV</td>
</tr>
<tr>
<td></td>
<td>Daugherty (1972–74) 20–800 MeV</td>
</tr>
<tr>
<td>1990</td>
<td>MASS (1989) 1.3–26 GeV</td>
</tr>
</tbody>
</table>

Detector concepts

- Magnetic spectrometer (charge sign and momentum).
- Čerenkov detector and shower detector (calorimeter) for background rejection.
- Scintillators (hardware trigger).
- Bremsstrahlung radiator, east-west asymmetry in the geomagnetic cutoff...
THE NATURE OF THE COSMIC-RAY ELECTRON SPECTRUM, AND
SUPERNova REMNANT CONTRIBUTIONS

Ahmed Boulares
Physics Department, Space Physics Laboratory, University of Wisconsin–Madison
Received 1988 October 24; accepted 1988 December 29

ABSTRACT

We examine the observed cosmic-ray (CR) electron spectrum and positron fraction $e^+/\text{(e}^- + e^+\text{)}$ spectrum above 1 GeV, and find that a deconvolution of the total spectrum into three components is necessary because of the increase of $e^+/\text{(e}^- + e^+\text{)}$ above 5 GeV: (1) Secondary electrons e^\pm from the interaction of the CR protons with the interstellar gas provide the total e^+ for energies less than 3 GeV, but for energies above 3 GeV these electrons cannot account for the observed positron flux; (2) Electrons e^- generally thought to be primarily from supernova remnants (SNRs), probably via shock acceleration, dominate the total spectrum for more or less for the observed positron flux between 0.1 and 3 GeV.

At energies above ~ 20 GeV there is a deficit of primary electrons from SNR's, and other nearby sources must dominate. There are many suggested sources of electrons and positrons at high energy: Type I SN explosions (Colgate and Johnson 1960; Colgate 1983); pulsar magnetospheres (Gunn and Ostriker 1969; Arons 1983); dark matter annihilation (Rudaz and Stecker 1988). Most of the positrons are produced by pair production in these sources.
Positron fraction: the latter days

<table>
<thead>
<tr>
<th>Period</th>
<th>Experiment</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>HEAT (1994–95)</td>
<td>1–50 GeV</td>
</tr>
<tr>
<td>1993</td>
<td>TS93 (1993)</td>
<td>5–60 GeV</td>
</tr>
<tr>
<td>1994</td>
<td>CAPRICE94 (1994)</td>
<td>0.8–14 GeV</td>
</tr>
<tr>
<td>2006–??</td>
<td>PAMELA (2006–??)</td>
<td>1.5–100 GeV</td>
</tr>
</tbody>
</table>

Detector concepts

- **TOF** for the measurement of β and charge magnitude.
- **TRD** for electron-hadron discrimination.
- **Modern calorimeters**: shower topology, energy measurement, energy-momentum matching.
Antiproton Fraction

- **Bogomolov (1972–77)**
 - 2–5 GeV

- **Golden (1979)**
 - 5.6–12.5 GeV

- **MASS91 (1991)**
 - 3.4–19 GeV

 - 150 MeV–4.2 GeV

- **CAPRICE94 (1994)**
 - 620 MeV–3.19 GeV

- **CAPRICE98 (1998)**
 - 3–49 GeV

 - 4–50 GeV

- **BESS-Polar (2004–2007)**
 - 100 MeV–4.2 GeV

- **PAMELA (2006–??)**
 - 1–100 GeV
Anomalous rise in the positron fraction above 10 GeV;
- antiproton fraction consistent with secondary production.
- Several different viable interpretations (> 200 papers over the last year): more data needed!
Emulsion chambers (1968–79)
30 GeV–1.5 TeV [8.2 r. l.]

Hartman (1977)
9–300 GeV [8 r. l.]

Tang (1980)
4–280 GeV [18.5 r. l.]

PPB-BETS (2004)
10 GeV–1 TeV [9 r. l.]

1970
Meegan (1969–73)
6–100 GeV [33.7 r. l.]

1980

2000
BETS (1997–98)
10–100 GeV [7.3 r. l.]

Detector concepts
- Imaging calorimeters (energy measurement and background rejection).
- Many different implementations explored.
All electron inclusive spectrum

ATIC (Advanced Thin Ionization Calorimeter)
- Si matrix + C target + BGO calorimeter.
- Primary goal: CR hadronic component.

H.E.S.S. (High Energy Stereoscopic System)
- Array of Čerenkov telescopes.
- Primary goal: study of VHE γ-ray sources.

Fermi LAT (Large Area Telescope)
- Pair conversion telescope (Si tracker + CsI calorimeter + ACD).
- Primary goal: survey of the HE γ-ray sky.

- All electrons inclusive spectra published by the three experiments in 2008–09.
- None of the experiments specifically designed to detect electrons.
All electron inclusive spectrum

F. Aharonian et al., arXiv:0905.0105v1

Luca Baldini (INFN)
TeV Particle Astrophysics, July 15 2009
Future and perspectives I

AMS-02 (Alpha Magnetic Spectrometer)

- Three years on the ISS, starting in 2010.
- Positron fraction up to 300 GeV, antiproton fraction up to 450 GeV, all electrons up to 1.5 TeV.
- Silicon tracker and superconducting magnet; background rejection achieved with a combination of ToF, TRD, RICH and ECAL.
- Precursor flight (AMS-01) in 1998.

PEBS (Positron Electron Balloon Spectrometer)

- Positron fraction (and all electrons) up to 2 TeV.
- Scintillating fiber tracker with SiPM readout and superconducting magnet; ToF, TRD and ECAL for background rejection.
- PEBS-1 (with a permanent magnet, e^+ fraction up to 20 GeV) planned from 2012.
Future and perspectives—II

CALET (CALorimetric Electron Telescope)

- Three years on the ISS, starting in ≈ 2013.
- All electrons up to 20 TeV.
- ACD, double layer Si array, IMaging Calorimeter (IMC), Total Absorption Calorimeter (TASC).
- CALET-Polar to be flown on a LDBF in ≈ 2010 (3 technical flights before that).

ECAL (Electron CALorimeter)

- Two Long Duration Balloon Flights from Antarctica.
- All electrons up to a few TeV.
- Double-layer Si matrix, Scintillating Optical Fiber Track Imager (SOFTI), BGO calorimeter, neutron detector.
- Based on the ATIC heritage.
Future and perspectives—III

CREST (Cosmic Ray Electron Synchrotron Telescope)

- Two Antarctic LDBFs planned for 2010-2012.
- All electrons from 2 TeV to 50 TeV.
- Detect synchrotron radiation of primary electron as it passes through Earth’s magnetic field: 1024 BaF$_2$ crystal with hermetic ACD.
- Signal: line of photons arriving nearly simultaneously (mean energy 10 keV–5 MeV, related to the primary electron energy).

CTA, AGIS

- Planning for the next-generation ground-based gamma-ray observatories started.
- Efforts currently ongoing in the U.S., Europe, and Japan may unify into a world-wide collaboration.
- Sensitivity improved by one order of magnitude.
- All electrons up to ≈ 10 TeV.
Conclusions

- Long (at least four decades old) and fascinating story.
 - Many many experiments, huge body of knowledge obtained.
- Last two years have been particularly exciting:
 - Data of unprecedented quality and energy reach published by Pamela, ATIC, Fermi, H.E.S.S.
 - We can expect more from Pamela (positron and antiproton fraction, all electrons) and Fermi (anisotropies in the arrival directions).
- More exciting years to come:
 - Many experiments (in space, on balloons and on the ground) planned for the near future.