

Data Management

Databases for the CERN LHC: Techniques and Lessons Learned

2nd XLDB Workshop, SLAC, 29-30 Sept 2008

Maria Girone, CERN - IT

Outline

- Databases in the LHC Computing Grid
- Technologies
 behind
- 10 Lessons
 Learned

 Lessons Learned in deploying and operating the distributed WLCG service(s) may also be relevant, but not covered by this talk

LHC accelerator and exeriments

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Maria Girone

CERN Database Techniques and Experience

3

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Maria Girone

CERN Database Techniques and Experience

Δ

CH-1211 Genève 23

www.cern.ch/it

Switzerland

The LHC Computing Challenge

CERN**T** Department

Data volume

- High rate x large number of channels x 4 experiments
- →15 PetaBytes of new data each year stored
- Much more data discarded during multi-level filtering before storage

Compute power

- Event complexity x Nb. events x thousands users
- → 100 k of today's fastest CPUs

Worldwide analysis & funding

- Computing funding locally in major regions & countries
- Efficient analysis everywhere
- → GRID technology

Maria Girone

CERN Data

ürgen Knobloch/CERN

Relational databases are used by a wide-range of mission-critical applications that are part of the Grid infrastructure:

- middleware and storage related services (CASTOR, DPM, FTS, LFC, SRM)
- key infrastructure and operations services (dashboards, SAM, GridView, ...)
- LHC experiments' conditions, geometry, alignment, calibration, meta-data book-keeping.. (COOL, PVSS, ...)

Connected to 10 Tier-1 sites for synchronized Databases. Sharing policies and procedures

CH-1211 Genève 23

www.cern.ch/it

Switzerland

Key Technologies Behind

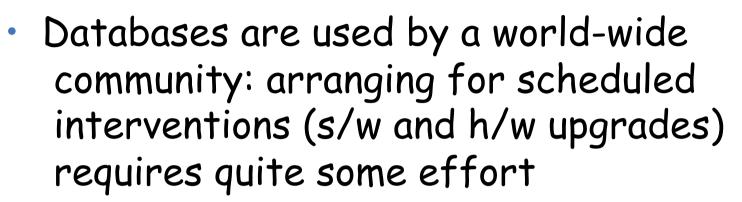
- Oracle Real Application Clusters (RAC) with Automatic Storage Management (ASM): database engine
- Oracle Streams: for sharing information between databases
- Oracle Data Guard: for additional protection against failures (human errors, disaster recoveries,)

Data Management

10 Lessons Learned

. Communication among DBA teams Department

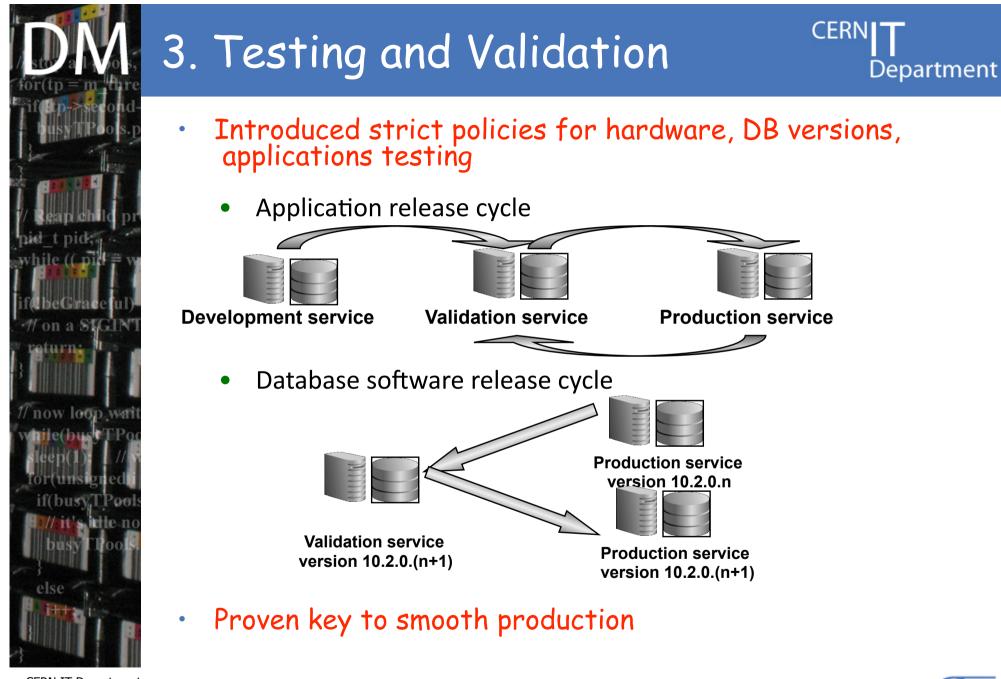
- Communication with a very large end-users community and with 11 DBA teams from large centers (TierO, 10 Tier1) is a challenge
 - Emphasis on homogeneity
 - Sharing policies & procedures
 - Regular meetings and workshops
- Different time zones may delay coordination and problem resolution



CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

now loop

2. Patching and Upgrades



- Rolling upgrades and use of stand-by databases help somewhat
 - 0.04% services unavailability = 3.5 hours/year
 - 0.22% server unavailability = 19 hours/year (Patch deployment, hardware)
- Interventions typically shorten than the time it takes to arrange for them

CERN

<u>Department</u>

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Maria Girone

CERN Database Techniques and Experience

Switzerland

www.cern.ch/it

4. Monitoring

- Comprehensive monitoring hard to achieve but essential for smooth operation
- Out of the box ORACLE tools (such as Grid Control) do not fully cover:
 - Streams
 - Storage
 - End-users database availability and performance
 - > In-house tools developed and fed back to Oracle development
- Coherent status board of distributed database services for all the 11 Tiers Maria Girong still under development

CH-1211 Genève 23

www.cern.ch/it

Switzerland

5. Backup & Recovery

- On-tape backups: fundamental for protecting data, but recoveries run at ~40MB/s (70 hours for LHC DB size of 10TB)
 - Very painful for an experiment in data-taking
- Put in place on-disk image copies of the DBs: able to recover to any point in time of the last 48 hours activities
 - Recovery time independent of DB size
- Use of Oracle Data Guard (physical stand -by) gives additional protection

- Disasters, multi-point failures data corruption Maria Girone CERN Database Techniques and Experience 13

6. Streams Replication

- Connected to 10 Tier1 sites for synchronized databases:
 - Operations involve source (TierO) and destination (Tier1) databases
 - Limited Streams knowledge at Tier1 sites
 - Based on TierO expertise
- Several bugs affecting Streams
 - Problem debugging takes time
 - Fixes are not always produced in time
 - Workarounds cause more manual work
- Unique design due to CERN Stream's setup particularifies (topology and performance needs)

now loop w

Maria Girone

CERN Database Techniques and Experience

7. Execution Plans and Statistics Department

- Execution plans not stable in time
 - Performance differences often of a order magnitude
- May change with s/w upgrades or with more data
- Use of explicit hints can only be a short term workaround
- For some applications the main DBA concern is to stabilize the execution plan

- Oracle RAC well proven with our mostly read-only – applications
 - I/O with ASM scales well adding more disk spindles
 - But, some key write applications need to be optimized to scale
 - Important application changes maybe required
 - Move to multi-core hardware can help
 - We had a major upgrade to 8-core servers before the LHC start-up

9. Resource allocation

- Assigning resources to users is done
 - Without clear resource plan from the community
 - With a long hardware acquisition cycle (8-9 months)
- Difficult to provide and maintain a service due to "last minute" changes
 - Often requires re-prioritization within the available hardware budget
 - Spare hardware can help somewhat

10. Resource Throttling

- Users workload driven by external factors (start-up, conferences, re -processing, discoveries?)
- Databases can become unstable under high-load
- Service throttling is key and implemented via Oracle Services for each large application (connection, CPU, memory)

Conclusions

- Recognizing the importance DB services to the experiments' activities, we have focused on robustness, scalability and flexibility
- Testing and validation hardware, DB versions, applications – proven key to smooth production
 - close cooperation between application developers and database administrators
- Extra complexity comes from distributed operations in the LHC Computing Grid
- Several data-challenges but data-taking starts only now

CH-1211 Genève 23 Switzerland www.cern.ch/it

Maria Girone

CERN Database Techniques and Experience

More Details

- Questions?
- References:
 - CERN Physics Databases wiki:
 - General advice
 - Connection management
 - <u>http://cern.ch/phydb/wiki</u>
 - Support: phydb.support@cern.ch
 - LCG 3D wiki
 - interventions, performance pages
 - <u>http://lcg3d.cern.ch</u>

CERN

Department