Complex Scientific Analytics in Astrophysics at Extreme Scale

Andrew Connolly
University of Washington
Science of Big Data Sets

• **Nature of the Universe**
 – **Big Questions**
 • Dark Energy, Dark Matter, New Physics
 – **Small Effects**
 • Large volumes and data
 – Petabytes (surveys and simulations)
 – Need to store, move, analyze
 – Data are complex, gappy, noisy
 – Computationally complex
 • Systematics are important
 – Poisson noise often doesn’t dominate
 – Need approximation algorithms
 – **Large Projects, Small Research Teams**
 • Astronomy is collaborative in nature
 • Science with small distributed groups
 • Sharing information is critical
What is the Science We Want to Do?

• Finding the unusual
 – Billion sources a night
 – Nova, supernova, GRBs
 – Instantaneous discovery

• Finding moving sources
 – Asteroids and comets
 – Proper motions of stars

• Mapping the Milky Way
 – Tidal streams
 – Galactic structure

• Dark energy and dark matter
 – Gravitational lensing
 – Slight distortion in shape
 – Trace the nature of dark energy
What are the Operations We Want to Do?

- **Finding the unusual**
 - Anomaly detection
 - Dimensionality reduction
 - Cross-matching data

- **Finding moving sources**
 - Tracking algorithms
 - Kalman filters

- **Mapping the Milky Way**
 - Density estimation
 - Clustering (n-tuples)

- **Dark energy and dark matter**
 - Computer vision
 - Weak Classifiers
 - High-D Model fitting

Not just volume also complexity
Data in Astrophysics

- **Archives**
 - **Heterogeneous**
 - Distributed across US and the world
 - Archive centers tend to be wavelength specific (HST, Chandra, XMM, GALEX, 2MASS, WISE)
 - **Image Data**
 - Standards defined for images (FITS)
 - Metadata for images critical but not always complete or well defined
 - **Catalog data**
 - Typically SQL databases, also flat files for small data sets
 - No standard for catalogs (native format is tabular and array based), no common vocabulary, mainly floats
 - APIs for access proposed, partially implemented
The Big Surveys

- **2000-2010**
 - **Sloan Digital Sky Survey (SDSS)**
 - 120 Mpixel camera, (0.08 PB in 10 years)
 - 300 Million unique sources (4 TB)
 - Typical access through SQLServer

- **2010-2014**
 - **PanSTARRS (PS1)**
 - 1.4 Gpixel camera (0.4 PB per year)

- **2017-2027**
 - **Large Synoptic Survey Telescope (LSST)**
 - 3.2 Gpixel camera (6 PB per year)
 - 1000 observations of every source

- **Simulations (the gorilla in the room)**
 - TBs per run generated today
 - TBs per hour in the next 5 years
Can’t calculate everything a priori (can’t just store the results)

- **Real-time processing pipelines**
 - Calibrate and transform images (pixel operations)
 - Real-time analysis (60s)
 - 5000 cores at base
- **Data Release pipelines**
 - Source detection and characterization (pixel operations)
 - Archive 10^8 detections per night
 - 20,000 cores at archive
- **Science Pipelines**
 - Pixel and catalog operations
 - Scans of 10s PB catalogs
 - Reanalysis of images
 - Cross matching of different data sets
 - 40 Tflops available
Science from Querying Data

• Meet the scientist
 – Broad range of abilities and requirements
 – Mathematically sophisticated (but not necessarily computationally)
 – Good at scripting (IDL, Python)
 – Code is often throw away (but this is changing)
 – Good at learning new approaches (e.g. SQL, AWS)
 • But needs to see fast returns if an early adopter
 • Community driven
 • Pretty tolerant…

• Provenance in science from large surveys
 – Large data sets and analysis codes
 – Reproducibility is critical (validation and publishing)
Analysis and Data in the Cloud

- Cloud related operations a natural fit
 - Move analysis to data
 - 80% of operations simply parallel
 - Large sweeps through the data
- Details impact design
 - Textual vs binary data
 - Hadoop application to stack images
 - Stack images (80+) to detect faint galaxies (register, transform, blur, add)
 - Data distributed not “ideal” fashion (many small files)
 - RPCs drive the clock time
 - Packaging of data to improves efficiency (sequence files, metadata database, storing where images reside on disk)
Astro Summary

- **Broad range of data sets**
 - Power-law of sizes with big surveys in the tail
- **Large data sets homogeneous (1000-fold scaling over 20 years)**
 - Surveys: PB next year, 100s PB in 10 years
 - Simulations: PB this year
- **Lots of defined formats for storage of images (but not catalogs)**
- **Storage is in a number of forms**
 - Images (raw and processed) on file systems
 - Catalogs (read only to scientist) on databases
 - Scientist defined data sets (to be joined with existing catalogs)
- **Applications are complex (supervised and unsupervised machine-learning) and broad**
 - Hand tuning individual applications or general scalable frameworks
 - Cloud-based applications are arriving
- **Silver bullets tend to get tarnished in the light of day**