

Drug Discovery in the Era of Big Data

Gregory McAllister Computational Biologist Novartis Institutes for Biomedical Research Developmental and Molecular Pathways

Novartis Institutes for BioMedical Research (NIBR) Who we are

- Unique research strategy driven by patient needs
- World-class research organization with about 5 000 scientists globally
- Intensifying focus on molecular pathways shared by various diseases
- Integration of clinical insights with mechanistic understanding of disease
- Research-to-Development transition redefined through fast and rigorous "proof-of-concept" trials
- Strategic alliances with academia and biotech strengthen preclinical pipeline

Novartis Institutes for BioMedical Research (NIBR) What we do

Novartis Institutes for BioMedical Research (NIBR) How we do it

Protein Networks, Molecular Pathways, are the Functional Units of the Cell

Human Disease

Novartis Institutes for BioMedical Research (NIBR) Developmental and Molecular Pathways

- Pathway Analysis for Target Identification/Validation:
 - Genomics
 - Proteomics
 - Model Organisms
 - High-throughput Screening
 - Computational Biology
 - RNAi Technology

Novartis Institutes for BioMedical Research (NIBR)

Increasing Data Size

Increasing Dimensionality of Data

Increasing complexity

Public and NIBR Data							
Biochemist	Proteomics				siRNA		
Transcriptomic		Ce	Cell based screening				
Signature	High	High Content			Copy number		
Exon array	NGS	NGS sequencin			Mutation		
Compound Sensitivity			Metabonomics				

A doubling of sequencing output every 9 months has outpaced and overtaken performance improvements within the disk storage and high-performance computation fields.

S D Kahn Science 2011;331:728-729

Analytics at NIBR

Where we are ... what we need

- Standard solutions
 - R, Matlab, S (your programming language of choice)
 - SGE linux cluster
 - Custom code (MPI)
 - Analytics within a database is limited
 - Hadoop/Mahout
- Data sizes are growing rapidly and endpoints are unclear.
- Our problem lies in complex analytics on ever increasing data sizes.
- Where we need to be
 - Systems that mimic R but work on TB size data sets.
 - Need a large-scale analytics system that just works
 - Multiple users: scientists, analysts, developers with broad range of skill sets

- DMAS Data Management and Analytics System
 - Open source
- Data Model:
 - Nested multi-dimensional arrays
 - Array cells can be tuples of values or other arrays
 - Arrays can be sparse

Data Storage:

- Arrays are "chunked" in multiple dimensions in storage
- Chunks are partitioned across multiple nodes
- Each node is shared nothing
- · Chunks have adjustable overlap
- Architecture:
 - Share nothing cluster (10's-1000's of nodes)
 - Queries refer to arrays as primary data type
 - Query planner optimizes for specific function

SciDB Feature Highlight – Multi-dimensional Arrays

SciDB Feature Highlight – Uncertainty

- Experimental measurements have an inherent error which is often discarded upon propagation through various analytics
- SciDB aims to incorporate a simple model of uncertainty normal distributions for elements (i.e. standard deviations)

- Arrays are immutable unless specifically defined otherwise
 CREATE UPDATABLE ARRAY U1 <a: double > [x=0:5,3,0, y=0:5,3,0]
 INPUT (U1,'/tmp/load.txt');
- Even when declared as updatable, original cell values are never overwritten...a new version is created.

SCAN(U1@DATETIME('02/20/2002'))

Log files guarantee repeatability of data derivation

ELN for computational biologists!

NOVARTIS

- Microarray platform for simultaneously measuring the expression levels of thousands of genes
- 60,000+ arrays
- 60,000 probes (multiple probes per gene)
- >100 indications
- 6B+ data points
- Use cases:
 - Target finding
 - Patient stratification
 - Biomarker identification

SciDB Example Use Case – Transcriptional Profiling

SciDB Example Use Case – Transcriptional Profiling

- Array query language (AQL)
 - Similar in syntax to SQL

CREATE ARRAY B <y: double, err2: double> [i=0:99,10,0, j=0:99,10,0] SELECT * FROM A, B SELECT count(part) FROM B GROUP BY i AS part

Array Functional Language (AFL)

```
CREATE EMPTY ARRAY Expo < Resp : double > [ Probe(int64)=2000,40,0, ID(string)=200,40,0 ]
load(Expo, '/tmp/expo.txt')

min ( Expo, Resp, ID )
max ( Expo, Resp, ID )
store (
    join (
        pearson ( Expo AS E1, Expo AS E2 ),
        repart (
            cross_join (
            transpose ( "Expo@1:ID"),
            "Expo@1:ID"
            ),
            Expo_Covar)
            ),
            Expo_Pearson)
```

Extensibility through UDF (PostgreSQL); operate on array

NOVARTIS

- Create the array
 - create array md_bounded

<response:double NOT NULL,empty_indicator:indicator NOT NULL> [algo(string)=24,1,0, sample(string)=49820,1000,0, probe(string)=65000,1000,0]

- Count the number of elements in one "slice" of an array
 - count (slice (md_bounded, algo, 'MAS5_150'));
 - Query execution time: 9.39 s
- Find the min/max of array across one dimension
 - aggregate (md_bounded, min(response), max(response), algo)
 - Query execution time: 41 minutes, 29 s
- For the MAS5_150 algorithm, what is the average response for each sample?
 - aggregate (slice (md_bounded, algo, 'MAS5_150'), avg(response), sample)
 - Query execution time: 1 minute, 3 s
- For the MAS5_150 algorithm, what is the average response for each probe?
 - aggregate (slice (md_bounded, algo, 'MAS5_150'), avg(response), probe)
 - Query execution time: 1 minute, 15 s

17 | XLDB 2011 | Gregory McAllister | October 19, 2011 | XLDB | Business Use Only

- What questions do we want to ask?
 - What genes have similar expression profiles?
 - What diseases "look like" each other?
- There is an abundance of literature answering these questions on the small scale...we want to be able to answer it across the entire data set.
- Simple first test for SciDB
 - Pearson correlation as a database query:
 - Data matrix: 60,000+ samples x 60,000+ probes
 - Infrastructure:
 - 4 nodes, 16 cores, 2.4GHz, 1TB drives
 - 270 minutes, 19 s (* Oct 2011)

store (pearson (slice (md_bounded, algo, 'MAS5_150'), slice (md_bounded, algo, 'MAS5_150')), md_bounded_MAS5150_pearson)

Biclustering

- Are there combinations of genes/samples that correlate strongly with each other? Are certain pathways over-represented?
- Singular value decomposition
 - Kopp-Schneider A et al, Bioinformatics 2011 vol. 27 (15) pp. 2089-2097
- Hybrid R/SciDB algorithm implemented
- 2160 x 60,000 matrix
- Amazon EC2
 - 4 nodes (2 XEON cores, 2.66 Ghz)
 - 8 GB memory
- 3 iterations -> ~31 hours
- * SciDB Oct 2011 build

Li G et al. Nucl. Acids Res. 2009;37:e101-e101

- Significant momentum in the field of "big data" analytics
- Blend new technologies with legacy systems
- "Right tool for the job"

