MCDB: THE MONTE CARLO DATABASE SYSTEM

Chris Jermaine

Rice U.

Joint work with:

Subi Arumugam
Peter Haas
Luis Perez
Foula Vagena
Cai Zhuhua

…and others…
MCDB

• MCDB is a database system being developed at Rice U.
• Extensive support for the declarative subset of SQL
• Full-blown, cost-based query optimizer
• Compiles queries to MapReduce jobs, run on Hadoop
 — So it scales to very large data sizes
 — Maybe not well, but it scales!
• But that’s not what’s interesting about MCDB
 — It’s the native support for stochastic analytics
Example

• Say you have archived billions of sales records and want to know:
 “What would my profits have been in ’08 if I’d cut all of my margins by 10%?”

• How might we use a data warehouse to guess this answer?
 — Need to “guess” each customer’s demand at new price
 — Use to build a hypothetical, revised version of sales table
 — Finally, join this table with others (prices, supply costs, etc.) to compute profits

• Here’s how an analyst might use MCDB to do this...
A Stochastic Demand Model

For a given customer, demand is a linear function
(I know, could do better than linear...)

Quantity purchased

Price of part A
A Stochastic Demand Model

To allow for variability, uncertainty, model is “probabilistic”
A Stochastic Demand Model

Demand curve is generated via samples from twin Gamma distributions

\[D_0 \sim \text{Gamma}(k_D, \theta_D) \]

\[P_0 \sim \text{Gamma}(k_P, \theta_P) \]
A Stochastic Demand Model

Demand curve is generated via samples from twin Gamma distributions

- This defines what’s known as a “prior” over cust demand curves
A Stochastic Demand Model

- This defines what’s known as a “prior” over cust demand curves
- Taking into account what the cust actually purchased...
 — Restricts the set of possible demand curves

Allowable set of demand curves is a “posterior dist” to a Bayesian
This Is Where MCDB Comes In

• In MCDB, easy to associate a posterior dist of demand curves...
 — with every one of the 100M customers in a large database
 — And then use those curves to generate stochastic DB instances

Done by implementing a “VG Function” which performs the simulation
This Is Where MCDB Comes In

- In MCDB, easy to associate a posterior dist of demand curves...
 - with every one of the 100M customers in a large database
 - And then use those curves to generate stochastic DB instances

Logically, MCDB generates many database instances ("possible worlds")
This Is Where MCDB Comes In

• In MCDB, easy to associate a posterior dist of demand curves...
 — with every one of the 100M customers in a large database
 — And then use those curves to generate stochastic DB instances

Logically, MCDB generates many database instances ("possible worlds")
This Is Where MCDB Comes In

• In MCDB, easy to associate a posterior dist of demand curves...
 — with every one of the 100M customers in a large database
 — And then use those curves to generate stochastic DB instances

Then a user-issued SQL query is simultaneously evaluated over all instances
In MCDB, easy to associate a posterior dist of demand curves...

- with every one of the 100M customers in a large database
- And then use those curves to generate stochastic DB instances

Gives an empirical distribution of result sets
This Is Where MCDB Comes In

• In MCDB, easy to associate a posterior dist of demand curves...
 — with every one of the 100M customers in a large database
 — And then use those curves to generate stochastic DB instances

MCDB

Warehouse data

Parameterization

Simulation

Stochastic model

n database instances

SQL

n query results

Process happens entirely within MCDB

Download it today!