Minerva: A Compute Capable SSD Architecture for Next-Generation Non-Volatile Memories

Arup De, Maya Gokhale, Rajesh Gupta and Steven Swanson

Non-volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

Institute for Scientific Computing Research
Lawrence Livermore National Laboratory
Future System Architecture

IO access time \approx nanoseconds! (read hit in L1, L2 caches)

1X latency

DRAM

>100000X latency

Disk

~1-100X latency

Memory Controller

I/O Controller

Cache (SRAM)

CPU

CPU

PCM

STTM

MRAM

Flash
Why Minerva?

• Growing demand for data-intensive applications
• Emerging non-volatile storage technologies are promising
 — Byte-addressable, DRAM-like latency & BW
• Limited External IO bandwidth
• Power efficiency
Minerva

• Based on moving computation close to data
• Moved data intensive computation to storage to avoid redundant data transfer between the host and the storage
• Huge power and performance gain for data intensive application
Minerva Architecture on BEE3

- **Host interface**
 - PCIe 1.1 x8 (2GB/s Full Duplex)
 - Scheduler

- **4.0GB/s Ring Network**

- **Storage Processor**
 - Mem Ctrl
 - Start Gap
 - 16GB DDR2

- **Mem Ctrl**
- **Start Gap**
- **16GB DDR2**