EarthServer: Half a Petabyte flocking around an Array Analytics Engine

XLDB, Stanford, 2012-sep-11

Peter Baumann
Jacobs University | rasdaman GmbH
A Brief History of Array DBMSs

First appearance in literature (not first implementation)

Something wrong/missing? Let us know!
Array DB Research @ Jacobs U

- Large-Scale Scientific Information Systems research group
 - focus: large-scale n-D raster services & beyond
 - www.jacobs-university.de/lsis

- Spin-off company: rasdaman GmbH

- Main results:
 - Array DBMS, rasdaman
 - Geo service standards: Chair, OGC raster-relevant working groups, editor of 10+ stds & candidate stds
 - Geo Array QL standard (adopted)
 - Further: Array SQL
EarthServer: *Big Earth Data Analytics*

- Scalable On-Demand Analytics & Fusion for all Earth Sciences
 - 7 mUS$ budget, 11 partners, 3 years
 - Based on rasdaman
 - Federated query processing, integrated data/metadata search, 3D clients

- 6 * 100+ TB databases for all Earth sciences + planetary science

Cryospheric Science
- landcover mapping

Airborne Science
- high-altitude long-endurance drones

Atmospheric Science
- climate variables

Geology
- geological models

Oceanography
- marine model runs + in-situ data

Planetary Science
- Mars geology
The rasdaman Array DBMS

- Goal: massive n-D Sensor, Image, Model, & Statistics DB
 - [Baumann 1992, Baumann VLDBJ 1994, ...]

- declarative, minimal, safe Array Algebra:
 - Intensive user studies: statistics, image, signal processing

- Minimally invasive DBMS integration
 - new attribute type: array<celltype,extent>

- SQL-embedded DML with array operators
 - select / insert / update / delete + „partial update“

```sql
select img.scene.green[x0:x1,y0:y1] > 130
from LandsatArchive as img
where some_cells( img.scene.nir > 127)
```

- Web mapping, image & signal processing, statistics, linear algebra, pattern mining, scientific analytics
Tiled Array Storage

- **Goal:** faster loading by tuning storage pattern to workload
 - Tiles stored in BLOBs = unit of disk access

- **Tiling classification** [Furtado+ 1999]
 based on degree of alignment
 - Cool idea: overlapping tiles [SciDB 2010]

```
regular   irregular   partially aligned   totally nonaligned
aligned   nonaligned
```
Query Processing: Overview

- Clear separation: set vs array trees
- Extensive optimization
- Tile-based evaluation

\[
\text{select } a < \text{avg}_\text{cells}(b + c) \\
\text{from } a, b, c
\]
QP in a Federation

- Heterogeneous WCPS peer networks
- Manifold criteria possible: data location, minimal transport, current load, ...

for a in (A), b in (B)
return encode(

 (($a.nir - a.red) / (a.nir + a.red)
 - ($b.nir - b.red) / (b.nir + b.red)), "HDF5"
)

for a in (A)
return encode(

 ($a.nir - a.red) / (a.nir + a.red),
 "array-compressed"
)

for b in (B)
return encode(

 ($b.nir - b.red) / (b.nir + b.red),
 "array-compressed"
)

[Owonibi 2012]
Optimizations Investigated

- Adaptive tiling
- Adaptive compression
- Multi-dimensional indexing
- Distributed query processing
- Query rewriting
- Pre-aggregation
- Physical operator clustering
- Transparent tape integration
- Just-in-time compilation
- GPU processing
- Tile caching
- ...

CU @ poster!
Summary: Domains Investigated

- **Geo**
 - Environmental sensor data, 1-D
 - Satellite / seafloor maps, 2-D
 - Geophysics (3-D x/y/z)
 - Climate modelling (4-D, x/y/z/t)

- **Life science**
 - Gene expression simulation (3-D)
 - Human brain imaging (3-D / 4-D)

- **Other**
 - Computational Fluid Dynamics (3-D)
 - Astrophysics (4-D)