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Four major types of storage systems 
▪  Online Transaction Processing Databases (OLTP) 

▪  The Facebook Social Graph 

▪  Semi-online Light Transaction Processing Databases (SLTP) 

▪  Facebook Messages  and Facebook Time Series  

▪  Immutable DataStore 

▪  Photos, videos, etc 

▪  Analytics DataStore 

▪  Data Warehouse, Logs storage 

 



Size and Scale of Databases 
Total Size Technology Bottlenecks 

 
Facebook Graph 

 
Single digit petabytes 

 
MySQL and TAO 

 
Random read IOPS 

Facebook 
Messages and 

Time Series 
Data 

 
 

Tens of petabytes 

 
 

HBase and HDFS 

 
Write IOPS and 

storage capacity 

Facebook 
Photos 

 
High tens of 

petabytes 

 
Haystack 

 
storage capacity 

Data 
Warehouse 

 
Hundreds of 

petabytes 

 
Hive, HDFS and 

Hadoop 

 
storage capacity 



Characteristics 
Query 

Latency 
Consistency Durability 

 
Facebook 

Graph 

 
 < few 

milliseconds 

 
quickly 

consistent 
across data 

centers 

 
No data loss 

Facebook 
Messages 
and Time 

Series Data 

 
 

< 200 millisec 

 
consistent 

within a data 
center 

 
No data loss 

Facebook 
Photos 

 
< 250 millisec 

 
immutable 

 
No data loss 

Data 
Warehouse 

 
< 1 min 

 
not consistent 

across data 
centers 

 
No silent data 

loss 



Facebook Graph: Objects and Associations 



Objects & Associations 

Data model 

6205972929 
(story) 

8636146 
(user) 

604191769 
(user) 

name: Barack Obama 
birthday: 08/04/1961 
website: http://… 
verified: 1 
… 

likes 

fan 

friend 

admin 

liked by 

18429207554 
(page) 

friend 



Facebook Social Graph: TAO and MySQL 
An OLTP workload: 

▪  Uneven read heavy workload 

▪  Huge working set with creation-time locality 

▪  Highly interconnected data 

▪  Constantly evolving 

▪  As consistent as possible 

 



Data model 
Content aware data store 

▪  Allows for server-side data processing 

▪  Can exploit creation-time locality 

▪  Graph data model 

▪  Nodes and Edges : Objects and Associations 

▪  Restricted graph API 



Data model 
Objects & Associations 

▪  Object -> unique 64 bit ID plus a typed dictionary 

▪  (id) -> (otype, (key -> value)* ) 

▪  ID 6815841748 -> {‘type’: page, ‘name’: “Barack Obama”, … } 

▪  Association -> typed directed edge between 2 IDs 

▪  (id1, atype, id2) -> (time, (key -> value)* ) 

▪  (8636146, RSVP, 130855887032173) -> (1327719600, {‘response’: ‘YES’}) 

▪  Association lists 

▪  (id1, atype) -> all assocs with given id1, atype in desc order by time 



Data model 
API 

▪  Object : (id) -> (otype, (key -> value)* ) 

▪  obj_add(otype, (k->v)*) : creates new object, returns its id 

▪  obj_update(id, (k->v)*) : updates some or all fields 

▪  obj_delete(id): removes the object permanently 

▪  obj_get(id) : returns type and fields of a given object if exists 



Data model 
API 

▪  Association : (id1, atype, id2) -> (time, (key -> value)* ) 

▪  assoc_add(id1, atype, id2, time, (k->v)*) : adds/updates the given assoc 

▪  assoc_delete(id1, atype, id2) : deletes the given association 



Data model 
API 

▪  Association : (id1, atype, id2) -> (time, (key -> value)* ) 

▪  assoc_get(id1, atype, id2set) :  returns assocs where id2 ∈ id2set 

▪  assoc_range(id1, atype, offset, limit, filters*): get relevant matching 
  assocs from the given assoc list 

▪  assoc_count(id1, atype): returns size of given assoc list 

 



Cache & Storage 
Architecture 

TAO Storage Cache 
MySQL Storage 

Web servers 



Sharding 

▪  Object ids and Assoc id1s are mapped to shard ids 

Architecture 

 
s1 s3 
s5 

 
s2 s6 

 
s4 s7 
s8 

TAO Cache 

db2 db4 

MySQL Storage 

db1 db3 
db8 

   db7 

db5 db6 

Web Servers 



Architecture 
Scale independently 

 

TAO Cache 
MySQL Storage 

Web Servers 



Architecture 
Leaders and followers 

 

MySQL Storage 

TAO Follower Web 

TAO Follower Web 

TAO Leader 



Architecture 
Multiple regions 

Web 

Follower 

Web 

Follower 

Web 

Follower 

Master 

Master
Leader 

Web 

Follower 

Web 

Follower 

Replica 

Slave 
Leader 

MySQL Replication 



Workload 

▪  Read-heavy workload 

▪  Significant range queries 

▪  LinkBench benchmark being open-sourced 

▪  http://www.github.com/facebook/linkbench 

▪  Real data distribution of Assocs and their access patterns 



Messages & Time Series Database 
 SLTP workload 



Facebook Messages 

Emails Chats SMS Messages 



Why we chose HBase 
▪  High write throughput 

▪  Horizontal scalability 

▪  Automatic Failover 

▪  Strong consistency within a data center 

▪  Benefits of HDFS : Fault tolerant,  scalable, Map-Reduce toolset,  

▪  Why is this SLTP? 

▪  Semi-online: Queries run even if part of the database is offline 

▪  Light Transactions: single row transactions 

▪  Storage capacity bound rather than iops or cpu bound 



What we store in  HBase 
▪  Small messages 

▪  Message metadata (thread/message indices) 

▪  Search index 

▪  Large attachments stored in Haystack (photo store) 



Size and scale of Messages Database 
▪  6 Billion messages/day 

▪  74 Billion operations/day 

▪  At peak: 1.5 million operations/sec 

▪  55% read, 45% write operations 

▪  Average write operation inserts 16 records 

▪  All data is lzo compressed 

▪  Growing at 8 TB/day 



Haystack: The Photo Store 



Facebook Photo DataStore 
2009 2012 

Total Size 15 billion photos 
1.5 Petabyte 

 
High tens of petabytes 

 
Upload Rate 

 
30 million photos/day 

3 TB/day 

 
300 million photos/day 

30 TB/day 

 
Serving Rate 

 
555K  images/sec 



Haystack based Design 

Browser 

Web 
Server 

 
CDN 

 

Haystack 
Directory 

Haystack Store 

Haystack 
Cache 



Haystack Internals 
▪  Log structured, append-only object store 

▪  Built on commodity hardware 

▪  Application-aware replication 

▪  Images stored in 100 GB xfs-files called needles 

▪  An in-memory index for each needle file 

▪  32 bytes of index per photo 



Hive Analytics Warehouse 



www.facebook.com	
  

User tags  
a photo 

Log line generated: 
<user_id, photo_id> 

Scribe	
  Log	
  Storage	
  (HDFS)	
  
Log line reaches  
Scribeh (10s) 

copier/loader	
  

Hive	
  Warehouse	
  

Log line reaches 
warehouse (15 min) 

MySQL	
  DB	
  

Scrapes	
  
User info reaches 
Warehouse (1day) 

nocron	
  

Periodic	
  Analysis	
  (HIVE)	
  

Daily report on count of  
photo tags by country (1day) 

hipal	
  

Adhoc	
  Analysis	
  (HIVE)	
  

Count photos tagged by  
females age 20-25 yesterday 

Life of a photo tag in Hadoop/Hive storage 

Count users tagging photos 
in the last hour (1min) 

RealHme	
  AnalyHcs	
  (HBASE)	
  
puma	
  



Analytics Data Growth(last 4 years) 

Facebook 
Users 

Queries/Day 
Scribe Data/

Day 
Nodes in 

warehouse 
Size (Total) 

Growth 14X 60X 250X 260X 2500X 



Why use Hive instead of a Parallel DBMS? 
▪  Stonebraker/DeWitt from the DBMS community: 

▪  Quote “major step backwards” 

▪  Published benchmark results which show that Hive is not as performant 
as a traditional DBMS 

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/ 



Why Hive? 
▪  Prospecting for gold in the wild-west….. 

▪  A platform for huge data-experiments 

▪  A majority of queries are searching for a single gold nugget 

▪  Great advantage in keeping all data in one queryable system 

▪  No structure to data, specify structure at query time 

▪  Crowd Sourcing for data discovery 

▪  There are 50K tables in a single warehouse 

▪  Users are DBAs themselves  

▪  Questions about a table are directed to users of that table 

▪  Automatic query lineage tools help here 



Why Hive? 
▪  No Lock-in 

▪  Hive/Hadoop is open source 

▪  Data is open-format, one can access data below the database layer 

▪  Want a new UDF? No problem, Very easily extendable 

 

▪  Shortcomings of existing DBMS benchmarks 

▪  Does not test fault tolerance – kill machines 

▪  Does not measure elasticity – add and remove machines 

▪  Does not measure throughput – concurrent queries in parallel 



Future Challenges 
 



New trends in storage software 
▪  Trends: 

▪  SSDs cheaper, increasing number of CPUs per server 

▪  SATA disk capacities reaching 4 - 8 TB per disk, falling prices $/GB 

▪  New projects 

▪  Evaluate OLTP databases that scales linearly with the number of cps 

▪  Prototype storing cold photos on spin-down disks 



Questions? 
dhruba@fb.com 

 
http://hadoopblog.blogspot.com/ 


