
Petabyte Scale Data at Facebook

Dhruba Borthakur ,
Engineer at Facebook,
XLDB Conference at Stanford University, Sept 2012

1 Types of Data

2 Data Model and API for Facebook Graph Data

3 SLTP (Semi-OLTP) and Analytics data

4 Immutable data store for photos, videos, etc

5 Why Hive?

Agenda

Four major types of storage systems
▪  Online Transaction Processing Databases (OLTP)

▪  The Facebook Social Graph

▪  Semi-online Light Transaction Processing Databases (SLTP)

▪  Facebook Messages and Facebook Time Series

▪  Immutable DataStore

▪  Photos, videos, etc

▪  Analytics DataStore

▪  Data Warehouse, Logs storage

Size and Scale of Databases
Total Size Technology Bottlenecks

Facebook Graph

Single digit petabytes

MySQL and TAO

Random read IOPS

Facebook
Messages and

Time Series
Data

Tens of petabytes

HBase and HDFS

Write IOPS and

storage capacity

Facebook
Photos

High tens of

petabytes

Haystack

storage capacity

Data
Warehouse

Hundreds of

petabytes

Hive, HDFS and

Hadoop

storage capacity

Characteristics
Query

Latency
Consistency Durability

Facebook

Graph

 < few

milliseconds

quickly

consistent
across data

centers

No data loss

Facebook
Messages
and Time

Series Data

< 200 millisec

consistent

within a data
center

No data loss

Facebook
Photos

< 250 millisec

immutable

No data loss

Data
Warehouse

< 1 min

not consistent

across data
centers

No silent data

loss

Facebook Graph: Objects and Associations

Objects & Associations

Data model

6205972929
(story)

8636146
(user)

604191769
(user)

name: Barack Obama
birthday: 08/04/1961
website: http://…
verified: 1
…

likes

fan

friend

admin

liked by

18429207554
(page)

friend

Facebook Social Graph: TAO and MySQL
An OLTP workload:

▪  Uneven read heavy workload

▪  Huge working set with creation-time locality

▪  Highly interconnected data

▪  Constantly evolving

▪  As consistent as possible

Data model
Content aware data store

▪  Allows for server-side data processing

▪  Can exploit creation-time locality

▪  Graph data model

▪  Nodes and Edges : Objects and Associations

▪  Restricted graph API

Data model
Objects & Associations

▪  Object -> unique 64 bit ID plus a typed dictionary

▪  (id) -> (otype, (key -> value)*)

▪  ID 6815841748 -> {‘type’: page, ‘name’: “Barack Obama”, … }

▪  Association -> typed directed edge between 2 IDs

▪  (id1, atype, id2) -> (time, (key -> value)*)

▪  (8636146, RSVP, 130855887032173) -> (1327719600, {‘response’: ‘YES’})

▪  Association lists

▪  (id1, atype) -> all assocs with given id1, atype in desc order by time

Data model
API

▪  Object : (id) -> (otype, (key -> value)*)

▪  obj_add(otype, (k->v)*) : creates new object, returns its id

▪  obj_update(id, (k->v)*) : updates some or all fields

▪  obj_delete(id): removes the object permanently

▪  obj_get(id) : returns type and fields of a given object if exists

Data model
API

▪  Association : (id1, atype, id2) -> (time, (key -> value)*)

▪  assoc_add(id1, atype, id2, time, (k->v)*) : adds/updates the given assoc

▪  assoc_delete(id1, atype, id2) : deletes the given association

Data model
API

▪  Association : (id1, atype, id2) -> (time, (key -> value)*)

▪  assoc_get(id1, atype, id2set) : returns assocs where id2 ∈ id2set

▪  assoc_range(id1, atype, offset, limit, filters*): get relevant matching
 assocs from the given assoc list

▪  assoc_count(id1, atype): returns size of given assoc list

Cache & Storage
Architecture

TAO Storage Cache
MySQL Storage

Web servers

Sharding

▪  Object ids and Assoc id1s are mapped to shard ids

Architecture

s1 s3
s5

s2 s6

s4 s7
s8

TAO Cache

db2 db4

MySQL Storage

db1 db3
db8

 db7

db5 db6

Web Servers

Architecture
Scale independently

TAO Cache
MySQL Storage

Web Servers

Architecture
Leaders and followers

MySQL Storage

TAO Follower Web

TAO Follower Web

TAO Leader

Architecture
Multiple regions

Web

Follower

Web

Follower

Web

Follower

Master

Master
Leader

Web

Follower

Web

Follower

Replica

Slave
Leader

MySQL Replication

Workload

▪  Read-heavy workload

▪  Significant range queries

▪  LinkBench benchmark being open-sourced

▪  http://www.github.com/facebook/linkbench

▪  Real data distribution of Assocs and their access patterns

Messages & Time Series Database
 SLTP workload

Facebook Messages

Emails Chats SMS Messages

Why we chose HBase
▪  High write throughput

▪  Horizontal scalability

▪  Automatic Failover

▪  Strong consistency within a data center

▪  Benefits of HDFS : Fault tolerant, scalable, Map-Reduce toolset,

▪  Why is this SLTP?

▪  Semi-online: Queries run even if part of the database is offline

▪  Light Transactions: single row transactions

▪  Storage capacity bound rather than iops or cpu bound

What we store in HBase
▪  Small messages

▪  Message metadata (thread/message indices)

▪  Search index

▪  Large attachments stored in Haystack (photo store)

Size and scale of Messages Database
▪  6 Billion messages/day

▪  74 Billion operations/day

▪  At peak: 1.5 million operations/sec

▪  55% read, 45% write operations

▪  Average write operation inserts 16 records

▪  All data is lzo compressed

▪  Growing at 8 TB/day

Haystack: The Photo Store

Facebook Photo DataStore
2009 2012

Total Size 15 billion photos
1.5 Petabyte

High tens of petabytes

Upload Rate

30 million photos/day

3 TB/day

300 million photos/day

30 TB/day

Serving Rate

555K images/sec

Haystack based Design

Browser

Web
Server

CDN

Haystack
Directory

Haystack Store

Haystack
Cache

Haystack Internals
▪  Log structured, append-only object store

▪  Built on commodity hardware

▪  Application-aware replication

▪  Images stored in 100 GB xfs-files called needles

▪  An in-memory index for each needle file

▪  32 bytes of index per photo

Hive Analytics Warehouse

www.facebook.com	

User tags
a photo

Log line generated:
<user_id, photo_id>

Scribe	
 Log	
 Storage	
 (HDFS)	

Log line reaches
Scribeh (10s)

copier/loader	

Hive	
 Warehouse	

Log line reaches
warehouse (15 min)

MySQL	
 DB	

Scrapes	

User info reaches
Warehouse (1day)

nocron	

Periodic	
 Analysis	
 (HIVE)	

Daily report on count of
photo tags by country (1day)

hipal	

Adhoc	
 Analysis	
 (HIVE)	

Count photos tagged by
females age 20-25 yesterday

Life of a photo tag in Hadoop/Hive storage

Count users tagging photos
in the last hour (1min)

RealHme	
 AnalyHcs	
 (HBASE)	

puma	

Analytics Data Growth(last 4 years)

Facebook
Users

Queries/Day
Scribe Data/

Day
Nodes in

warehouse
Size (Total)

Growth 14X 60X 250X 260X 2500X

Why use Hive instead of a Parallel DBMS?
▪  Stonebraker/DeWitt from the DBMS community:

▪  Quote “major step backwards”

▪  Published benchmark results which show that Hive is not as performant
as a traditional DBMS

▪  http://database.cs.brown.edu/projects/mapreduce-vs-dbms/

Why Hive?
▪  Prospecting for gold in the wild-west…..

▪  A platform for huge data-experiments

▪  A majority of queries are searching for a single gold nugget

▪  Great advantage in keeping all data in one queryable system

▪  No structure to data, specify structure at query time

▪  Crowd Sourcing for data discovery

▪  There are 50K tables in a single warehouse

▪  Users are DBAs themselves

▪  Questions about a table are directed to users of that table

▪  Automatic query lineage tools help here

Why Hive?
▪  No Lock-in

▪  Hive/Hadoop is open source

▪  Data is open-format, one can access data below the database layer

▪  Want a new UDF? No problem, Very easily extendable

▪  Shortcomings of existing DBMS benchmarks

▪  Does not test fault tolerance – kill machines

▪  Does not measure elasticity – add and remove machines

▪  Does not measure throughput – concurrent queries in parallel

Future Challenges

New trends in storage software
▪  Trends:

▪  SSDs cheaper, increasing number of CPUs per server

▪  SATA disk capacities reaching 4 - 8 TB per disk, falling prices $/GB

▪  New projects

▪  Evaluate OLTP databases that scales linearly with the number of cps

▪  Prototype storing cold photos on spin-down disks

Questions?
dhruba@fb.com

http://hadoopblog.blogspot.com/

