Petabyte Scale Data at Facebook

Dhruba Borthakur,
Engineer at Facebook,
XLDB Conference at Stanford University, Sept 2012
Agenda

1 Types of Data
2 Data Model and API for Facebook Graph Data
3 SLTP (Semi-OLTP) and Analytics data
4 Immutable data store for photos, videos, etc
5 Why Hive?
Four major types of storage systems

- Online Transaction Processing Databases (OLTP)
 - The Facebook Social Graph

- Semi-online Light Transaction Processing Databases (SLTP)
 - Facebook Messages and Facebook Time Series

- Immutable DataStore
 - Photos, videos, etc

- Analytics DataStore
 - Data Warehouse, Logs storage
Size and Scale of Databases

<table>
<thead>
<tr>
<th></th>
<th>Total Size</th>
<th>Technology</th>
<th>Bottlenecks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Graph</td>
<td>Single digit petabytes</td>
<td>MySQL and TAO</td>
<td>Random read IOPS</td>
</tr>
<tr>
<td>Facebook Messages and Time Series Data</td>
<td>Tens of petabytes</td>
<td>HBase and HDFS</td>
<td>Write IOPS and storage capacity</td>
</tr>
<tr>
<td>Facebook Photos</td>
<td>High tens of petabytes</td>
<td>Haystack</td>
<td>storage capacity</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>Hundreds of petabytes</td>
<td>Hive, HDFS and Hadoop</td>
<td>storage capacity</td>
</tr>
</tbody>
</table>
Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Query Latency</th>
<th>Consistency</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook Graph</td>
<td>< few milliseconds</td>
<td>quickly consistent across data centers</td>
<td>No data loss</td>
</tr>
<tr>
<td>Facebook Messages and Time Series Data</td>
<td>< 200 milliseconds</td>
<td>consistent within a data center</td>
<td>No data loss</td>
</tr>
<tr>
<td>Facebook Photos</td>
<td>< 250 milliseconds</td>
<td>immutable</td>
<td>No data loss</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>< 1 min</td>
<td>not consistent across data centers</td>
<td>No silent data loss</td>
</tr>
</tbody>
</table>
Facebook Graph: Objects and Associations
Facebook Social Graph: TAO and MySQL

An OLTP workload:

- Uneven read heavy workload
- Huge working set with creation-time locality
- Highly interconnected data
- Constantly evolving
- As consistent as possible
Data model

Content aware data store

- Allows for server-side data processing
- Can exploit creation-time locality
- Graph data model
 - Nodes and Edges: Objects and Associations
- Restricted graph API
Data model

Objects & Associations

- Object -> unique 64 bit ID plus a typed dictionary
 - (id) -> (otype, (key -> value)*)
 - ID 6815841748 -> {'type': page, ‘name’: “Barack Obama”, ... }

- Association -> typed directed edge between 2 IDs
 - (id1, atype, id2) -> (time, (key -> value)*)
 - (8636146, RSVP, 130855887032173) -> (1327719600, {'response': ‘YES’})

- Association lists
 - (id1, atype) -> all assocs with given id1, atype in desc order by time
Data model

API

- Object : (id) -> (otype, (key -> value)*)
 - obj_add(otype, (k->v)*) : creates new object, returns its id
 - obj_update(id, (k->v)*) : updates some or all fields
 - obj_delete(id) : removes the object permanently
 - obj_get(id) : returns type and fields of a given object if exists
Data model

API

- Association: \((id_1, atype, id_2) \rightarrow (time, (key \rightarrow value)^*)\)
 - assoc_add\((id_1, atype, id_2, time, (k\rightarrow v)^*)\): adds/updates the given assoc
 - assoc_delete\((id_1, atype, id_2)\): deletes the given association
Data model

API

- Association : (id1, atype, id2) -> (time, (key -> value)*)
 - assoc_get(id1, atype, id2set) : returns assocs where id2 ∈ id2set
 - assoc_range(id1, atype, offset, limit, filters*) : get relevant matching assocs from the given assoc list
 - assoc_count(id1, atype) : returns size of given assoc list
Architecture

Cache & Storage

Web servers

TAO Storage Cache

MySQL Storage
Architecture

Sharding

- Object ids and Assoc id1s are mapped to shard ids
Architecture
Scale independently

Web Servers --> TAO Cache --> MySQL Storage
Architecture
Leaders and followers
Architecture

Multiple regions

MySQL Replication
Workload

- Read-heavy workload
 - Significant range queries
- LinkBench benchmark being open-sourced
 - http://www.github.com/facebook/linkbench
- Real data distribution of Assocs and their access patterns
Messages & Time Series Database
SLTP workload
Facebook Messages

- Messages
- Chats
- Emails
- SMS
Why we chose HBase

- High write throughput
- Horizontal scalability
- Automatic Failover
- Strong consistency within a data center
- Benefits of HDFS: Fault tolerant, scalable, Map-Reduce toolset,

Why is this SLTP?

- Semi-online: Queries run even if part of the database is offline
- Light Transactions: single row transactions
- Storage capacity bound rather than iops or cpu bound
What we store in HBase

- Small messages
- Message metadata (thread/message indices)
- Search index
- Large attachments stored in Haystack (photo store)
Size and scale of Messages Database

- 6 Billion messages/day
- 74 Billion operations/day
- At peak: 1.5 million operations/sec
- 55% read, 45% write operations
- Average write operation inserts 16 records
- All data is lzo compressed
- Growing at 8 TB/day
Haystack: The Photo Store
Facebook Photo DataStore

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Size</td>
<td>15 billion photos</td>
<td>High tens of petabytes</td>
</tr>
<tr>
<td></td>
<td>1.5 Petabyte</td>
<td></td>
</tr>
<tr>
<td>Upload Rate</td>
<td>30 million photos/day</td>
<td>300 million photos/day</td>
</tr>
<tr>
<td></td>
<td>3 TB/day</td>
<td>30 TB/day</td>
</tr>
<tr>
<td>Serving Rate</td>
<td>555K images/sec</td>
<td></td>
</tr>
</tbody>
</table>
Haystack based Design

- Haystack Directory
- Web Server
- Browser
- Haystack Store
- Haystack Cache
- CDN
Haystack Internals

- Log structured, append-only object store
- Built on commodity hardware
- Application-aware replication
- Images stored in 100 GB xfs-files called needles
- An in-memory index for each needle file
 - 32 bytes of index per photo
Hive Analytics Warehouse
Life of a photo tag in Hadoop/Hive storage

- **Periodic Analysis (HIVE)**
 - Daily report on count of photo tags by country (1 day)

- **Adhoc Analysis (HIVE)**
 - Count photos tagged by females age 20-25 yesterday

- **Hive Warehouse**
 - Log line reaches storage (HDFS) (10s)
 - Log line reaches warehouse (15 min)
 - User info reaches Warehouse (1 day)

- **Scribe Log Storage (HDFS)**
 - Log line generated: (user_id, photo_id)

- **copier/loader**

- **Realtime Analytics (HBASE)**
 - Count users tagging photos in the last hour (1 min)

- **Scrapes**

- **MySQL DB**

- **www.facebook.com**

- **User tags a photo**

- **nocron**

- **hipal**
<table>
<thead>
<tr>
<th>Growth</th>
<th>Facebook Users</th>
<th>Queries/Day</th>
<th>Scribe Data/Day</th>
<th>Nodes in warehouse</th>
<th>Size (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14X</td>
<td>60X</td>
<td>250X</td>
<td>260X</td>
<td>2500X</td>
<td></td>
</tr>
</tbody>
</table>
Why use Hive instead of a Parallel DBMS?

- Stonebraker/DeWitt from the DBMS community:
 - Quote “major step backwards”
 - Published benchmark results which show that Hive is not as performant as a traditional DBMS

Why Hive?
- Prospecting for gold in the wild-west.....
 - A platform for huge data-experiments
 - A majority of queries are searching for a single gold nugget
 - Great advantage in keeping all data in one queryable system
 - No structure to data, specify structure at query time
- Crowd Sourcing for data discovery
 - There are 50K tables in a single warehouse
 - Users are DBAs themselves
 - Questions about a table are directed to users of that table
 - Automatic query lineage tools help here
Why Hive?

- No Lock-in
 - Hive/Hadoop is open source
 - Data is open-format, one can access data below the database layer
 - Want a new UDF? No problem, Very easily extendable

- Shortcomings of existing DBMS benchmarks
 - Does not test fault tolerance – kill machines
 - Does not measure elasticity – add and remove machines
 - Does not measure throughput – concurrent queries in parallel
Future Challenges
New trends in storage software

- Trends:
 - SSDs cheaper, increasing number of CPUs per server
 - SATA disk capacities reaching 4 - 8 TB per disk, falling prices $/GB

- New projects
 - Evaluate OLTP databases that scales linearly with the number of cps
 - Prototype storing cold photos on spin-down disks
Questions?

dhruba@fb.com

http://hadoopblog.blogspot.com/