Zynga Analytics
Leveraging Big Data to Make Games More Fun and Social

Daniel McCaffrey
General Manager, Platform and Analytics Engineering
World’s leading social game developer

And growing rapidly web and mobile 3rd party games on the Zynga Platform
Built on global platforms, and our own Zynga API (services) and platform

- Play with your friends
- Synchronous or Asynchronous play
- Cooperative or Competitive play
By The Numbers

Users
- ~260 million MAUs
- ~60 million avg DAUs worldwide

Game Data
- Vertica driven
- ~60 billion rows/day
- ~10TB daily semi-structured data
- ~1.5PB source data
- Largest 230 2U nodes

Server Data
- Splunk
- 13TB per day raw logs from server and app logs
- Vertica or Hadoop for archives
Starting Core Concepts
What helped made Analytics successful at Zynga
Metrics Driven Culture

• Management desire to track goal progress by metrics
Analytics Everywhere

- Wanted open data access as much as possible
 - Freely accessible reports by everyone
 - Open Ad-hoc SQL access
 - Easy external service integration
Ease of Use and Integration

- Wanted easy/standard tool integration
 - ETL/ELT tools
 - Analysis tools/DB visualizers
 - Reporting
- External service integration via SQL
- Control data structure at moment logged via an API
- “Semi-structured” data capture for flexibility
- Centralized data schemas for easier analysis
Organizational Structure

• Centralized
 – Data/BI (centralized data schema and aggregation)
 – Data Infrastructure (centralized data flow)
 – Network level Data Analysts

• Centralized but embedded
 – Game and partner group Data Analysts
 • Schema, architecture and data knowledge
 • Share insights company wide
Art + Science, not Art vs Science

- Art: Generate the game idea and implement
- Science: Find out if it’s good/fun. Listen to the players.
SERVICES AND ARCHITECTURE
DATABASES IN USE

- Vertica: primary game/user analytics stores. 10TB/day, 70 billion rows/day
- Splunk: primary log analytics stores 13TB/day
- MySql Cluster 7.2x: streaming event DB. 70 nodes, 650 million rows/day
- MySql: many single node and sharded transactional DB’s
- Membase: memory store with persistence. Replaced memcache+mysql.
- HBase: Messaging service store. Disk>memory
- Memcache, Memqueue: Service stores when persistence isn’t needed.
- SOLR: Run-time text search needs
- Redis: Service stores with ranged queries.
- Oracle: Finance
- Memsql: being looked at
Dan’s Scalable Database Decision Matrix at Zynga, 2012

Does Data Have Schema that changes infrequently and is it text based?

- Yes
 - Is natural language processing or complex text search a major driver?
 - Yes
 - Do you need runtime access at scale as a service?
 - No
 - MongoDB, CouchDB, Citrus Leaf, etc.
 - Yes
 - Hadoop, (hives, pig, etc.), Splunk for logs (analytics)
 - No
 - SOLR
 - No

- No
 - Do you need runtime access at scale as a service?
 - Yes (in-memory)
 - Does it need “adhoc” access? Or is it specific object request driven?
 - No
 - MySQL Cluster 7.2x (possibly Memsql or VoltDB) (ANSI SQL)
 - Yes
 - Hbase (disk > memory)
 - No

Is it transactional or OLAP?

- Transactional
 - MySQL, (possibly memsql)
- OLAP
 - Vertica (SQL analytics)

Do you need range queries?

- Yes
 - Do you need an enumerated queue?
 - Yes
 - Membase
 - No
 - Memcache
- No
 - Redis

Do you need persistence or have highly varying key size distributions over time?
ZTRACK API

- Simple to use logging API
 - PHP, Java and Ruby
 - REST API as part of Zynga API
- Backend Leverages:
 - FB Scribe for scalable, fast worldwide message forwarding
 - Custom Java “ETL” database loaders
- Semi-structured data logging (flexible taxonomy)

PHP example

ztrack_count($user_id, "myevent", $value1, "kingdom", "phylum", "class", "family", "genus");
Vertica Data Warehouses

- MPP Compressed Column Store, Full ANSI SQL
- 6-9x compression on data, extremely fast bulk loading
- Stats
 - >60Billion rows/day, trickle-in/real-time from ZTrack
 - >10TB/day
 - Largest is 230 2U nodes, next generation will be 560 to 1,000
- Clusters
 - Production and Mirror, Social Graph, Sample, Virtual Goods tracking for revenue recognition/sox, Poker hands, International, Test and Staging…
Reporting and Analysis

- stats.zynga.com
 - Over 6,000 distinct report types
 - ~1080 DAU, ~1,480 WAU
 - ~3,000 report runs per day, 500-600 distinct reports each day
 - ~15,000 ad-hoc queries from users per day
 - Taxonomy slicer reports

- Ad-hoc SQL access clusters for analysis

- Analysts, Product Managers, Engineers and BI team work to create new insights, metrics and profiles and operationalize
Data Services

- Allows for run-time decisions in game or services
- API backed by fast in-memory data access (membase)
 - Network level data across data centers using membase sync
 - PHP and Java and REST API as part of Zynga API
- Access to real-time and daily aggregated user and game data, network level
- Some uses include:
 - Personalization
 - Targeting
 - Profiling
 - Matchmaking
Experiment Platform, A/B Testing

- Provides real-time:
 - Controlled Experimentation via web UI and game hooks
 - Reporting
- Simple API
 - Java, PHP and REST API
- Impact Game and Platform Design
 - Ability to see what happened in real time
 - Lots of experiments. Many fail. ~3-5K active at any time atm.
Real-Time Streaming Data Events

- Real-time **scalable** event aggregation, using time windows
- Presently handles over 70 billion events per day
- Technology:
 - Custom java for processing
 - Memcaches
 - Memqueues (“enumerated” memcache)
 - MySql Cluster 7.2x: ~70 nodes, 624mil rows/day, 300k query/day

Please see Michael Fan and Rushan Chen’s lightning talk on Streaming later today
Streaming Architecture
Streaming Uses

• Operation health monitoring/reporting and alerting
• Fast key metric reporting, offloading from Vertica
• Data Validation—Compare to Vertica
• Future: more timely run-time decisions in-game

Please see Michael Fan and Rushan Chen’s lightning talk on Streaming later today
Analytics Maturity at Zynga

I: Capture Events
- Transactional systems
- Reporting, Dashboards and Alerts

II: “What Happened?”
- Analysis, Experiments and Mining

III: “Why Did it Happen?”
- Analytics Driven Execution and Innovation via Data Services, new Game Features, ...

IV: Create Advantage
- Analytics Driven Execution and Innovation via Data Services, new Game Features, ...
APPENDIX/SUMMARY
Services Summary

• Centralized network level tracking, reporting and warehouses
• Embedded analysts as a service
• Centralized network analysts, BI and data infrastructure
• Data Services—Run-time data access
• Experiment service—Easy A/B testing
• Streaming event service—real-time scalable event aggregation
Zynga Core Concepts Summary

- Commitment to a metric driven mindset
- Open Access to data – reports, ad-hoc and external services
- Ease of use – tools, external services, schemas
- Art + Science
 - Experiment on ideas, analyze and make changes.
 - Use analytics to listen to the players and make changes
- Log with an API, add some structure data as possible at moment logged
- Standardize taxonomies quickly and enforce once mature
Connecting the World Through Games